147 research outputs found

    On the Distribution of Stellar Masses in Gamma-ray Burst Host Galaxies

    Get PDF
    We analyze Spitzer images of 30 long-duration gamma-ray burst (GRB) host galaxies. We estimate their total stellar masses (M_*) based on the rest-frame K-band luminosities (L_K_(rest)) and constrain their star formation rates (SFRs; not corrected for dust extinction) based on the rest-frame UV continua. Further, we compute a mean M_*/ L_K_(rest) = 0.45 M_☉/L_☉. We find that the hosts are low M_*, star-forming systems. The median M_* in our sample ( = 10^(9.7) M_☉) is lower than that of "field" galaxies (e.g., Gemini Deep Deep Survey). The range spanned by M_* is 10^7 M_☉ < M_* < 10^(11) M_☉, while the range spanned by the dust-uncorrected UV SFR is 10^(–2) M_☉ yr^(–1) < SFR < 10 M_☉ yr^(–1). There is no evidence for intrinsic evolution in the distribution of M_* with redshift. We show that extinction by dust must be present in at least 25% of the GRB hosts in our sample and suggest that this is a way to reconcile our finding of a relatively lower UV-based, specific SFR (φ ≡ SFR/M_*) with previous claims that GRBs have some of the highest φ values. We also examine the effect that the inability to resolve the star-forming regions in the hosts has on φ

    A nearby GRB host prototype for z~7 Lyman-break galaxies: Spitzer-IRS and X-shooter spectroscopy of the host galaxy of GRB031203

    Full text link
    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG031203. It is one of the nearest GRB hosts at z=0.1055, allowing both low and high-resolution spectroscopy with Spitzer-IRS. Medium resolution UV-to-K-band spectroscopy with the X-shooter spectrograph on the VLT is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and sub-mm observations. These data allow us to construct a UV-to-radio spectral energy distribution with almost complete spectroscopic coverage from 0.3-35 micron of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionisation fine structure line emission indicative of a hard radiation field in the galaxy, suggestive of strong ongoing star-formation and a very young stellar population. The selection of HG031203 via the presence of a GRB suggests that it might be a useful analogue of very young star-forming galaxies in the early universe, and hints that local BCDs may be used as more reliable analogues of star-formation in the early universe than typical local starbursts. We look at the current debate on the ages of the dominant stellar populations in z~7 and z~8 galaxies in this context. The nebular line emission is so strong in HG031203, that at z~7, it can reproduce the spectral energy distributions of z-band dropout galaxies with elevated IRAC 3.6 and 4.5 micron fluxes without the need to invoke a 4000A break.Comment: Published in ApJ. 9 pages, 6 figures, emulateapj styl

    The galaxies in the field of the nearby GRB980425/SN1998bw

    Full text link
    We present spectroscopic observations of ESO 184-G82, the host galaxy of GRB980425/SN1998bw, and six galaxies in its field. A host redshift of z=0.0087+/-0.0006 is derived, consistent with that measured by Tinney et al. (1998). Redshifts are obtained for the six surrounding galaxies observed. Three of these galaxies lie within 11 Mpc of each other, confirming the suggestion that some of these galaxies form a group. However, all of the field galaxies observed lie at significantly greater distances than ESO 184-G82 and are therefore not associated with it. The host galaxy of GRB980425/SN1998bw thus appears to be an isolated dwarf galaxy and interactions with other galaxies do not seem to be responsible for its star formation.Comment: 5 pages, 2 figures, accepted for publication in A&

    A High Signal-to-Noise Ratio Composite Spectrum of Gamma-ray Burst Afterglows

    Full text link
    We present a composite spectrum of 60 long duration gamma-ray burst (GRB) afterglows with redshifts in the range 0.35<z<6.7 observed with low resolution optical spectra. The composite spectrum covers the wavelength range 700-6600 A in the rest frame and has a mean signal-to-noise ratio of 150 per 1 A pixel and reaches a maximum of ~300 in the range 2500-3500 A. Equivalent widths are measured from metal absorption lines from the Lya line to ~5200 A, and associated metal and hydrogen lines are identified between the Lyman break and Lya line. The average transmission within the Lyman forest is consistent with that found along quasar lines of sight. We find a temporal variation in fine structure lines when dividing the sample into bursts observed within 2 hours from their trigger and those observed later. Other lines in the predominantly neutral gas show variations too, but this is most likely a random effect caused by weighting of individual strong absorption lines and which mimics a temporal variation. Bursts characterized with high or low prompt GRB energy release produce afterglows with similar absorption line strengths, and likewise for bursts with bright or faint optical afterglows. Bursts defined as dark from their optical to X-ray spectral index have stronger absorption lines relative to the optically bright bursts. The composite spectrum has strong CaII and MgII absorption lines as commonly found in dusty galaxies, however, we find no evidence for dust or a significant molecular content based on the non-detection of diffuse interstellar bands. Compared to starburst galaxy spectra, the GRB composite has much stronger fine structure lines, while metal absorption lines are weaker.Comment: Accepted for publication in ApJ, 24 page

    Star formation rates and stellar masses in z ~ 1 gamma ray burst hosts

    Get PDF
    We analyse 4.5, 8 and 24 um band Spitzer images of six gamma ray burst host galaxies at redshifts close to 1. We constrain their star formation rates (SFR) based on the entire available spectral energy distribution rather than the 24 um band only. Further, we estimate their stellar masses (M*) based on rest frame K band luminosities. Our sample spans a wide range of galaxy properties: derived SFRs range from less than 10 to a few hundred solar masses per year; values of M* range from 10^9 to 10^10 Mo with a median of 5.6 x 10^9 Mo. Comparing the specific star formation rate (PHI = SFR/M*) of our sample as a function of M* to other representative types of galaxies (distant red galaxies, Ly-alpha emitters, Lyman break galaxies, submillimeter galaxies and z ~ 2 galaxies from the Great Observatories Origins Deep Survey-North field), we find that gamma ray burst hosts are among those with the highest PHI.Comment: 4 pages by emulateApJ, 1 table and 2 colour figures; published in ApJ Letter

    Constraints on the parameters of the Left Right Mirror Model

    Get PDF
    We study some phenomenological constraints on the parameters of a left right model with mirror fermions (LRMM) that solves the strong CP problem. In particular, we evaluate the contribution of mirror neutrinos to the invisible Z decay width (\Gamma_Z^{inv}), and we find that the present experimental value on \Gamma_Z^{inv}, can be used to place an upper bound on the Z-Z' mixing angle that is consistent with limits obtained previously from other low-energy observables. In this model the charged fermions that correspond to the standard model (SM) mix with its mirror counterparts. This mixing, simultaneously with the Z-Z' one, leads to modifications of the \Gamma(Z --> f \bar{f}) decay width. By comparing with LEP data, we obtain bounds on the standard-mirror lepton mixing angles. We also find that the bottom quark mixing parameters can be chosen to fit the experimental values of R_b, and the resulting values for the Z-Z' mixing angle do not agree with previous bounds. However, this disagreement disappears if one takes the more recent ALEPH data.Comment: 7 pages, 2 figures, REVTe

    Outshining the quasars at reionisation: The X-ray spectrum and lightcurve of the redshift 6.29 Gamma-Ray Burst GRB050904

    Full text link
    Gamma-ray burst (GRB) 050904 is the most distant X-ray source known, at z=6.295, comparable to the farthest AGN and galaxies. Its X-ray flux decays, but not as a power-law; it is dominated by large variability from a few minutes to at least half a day. The spectra soften from a power-law with photon index Gamma=1.2 to 1.9, and are well-fit by an absorbed power-law with possible evidence of large intrinsic absorption. There is no evidence for discrete features, in spite of the high signal-to-noise ratio. In the days after the burst, GRB 050904 was by far the brightest known X-ray source at z>4. In the first minutes after the burst, the flux was >10^{-9} erg cm^-2 s^-1 in the 0.2-10keV band, corresponding to an apparent luminosity >10^5 times larger than the brightest AGN at these distances. More photons were acquired in a few minutes with Swift-XRT than XMM-Newton and Chandra obtained in ~300 ks of pointed observations of z>5 AGN. This observation is a clear demonstration of concept for efficient X-ray studies of the high-z IGM with large area, high-resolution X-ray detectors, and shows that early-phase GRBs are the only backlighting bright enough for X-ray absorption studies of the IGM at high redshift.Comment: Accepted for publication in ApJL. 5 pages with emulateapj, 3 figure

    A multi-colour study of the dark GRB 000210 host galaxy and its environment

    Get PDF
    We present UBVRIZJsHKs broad band photometry of the host galaxy of the dark gamma-ray burst (GRB) of February 10, 2000. These observations represent the most exhaustive photometry given to date of any GRB host galaxy. A grid of spectral templates have been fitted to the Spectral Energy Distribution (SED) of the host. The derived photometric redshift is z=0.842^+0.054_-0.042, which is in excellent agreement with the spectroscopic redshift (z=0.8463+/-0.0002) proposed by Piro et al. (2002) based on a single emission line. Furthermore, we have determined the photometric redshift of all the galaxies in an area of 6'x6' around the host galaxy, in order to check for their overdensity in the environment of the host. We find that the GRB 000210 host galaxy is a subluminous galaxy (L ~ 0.5+/-0.2 L*), with no companions above our detection threshold of 0.18+/-0.06 L*. Based on the restframe ultraviolet flux a star formation rate of 2.1+/-0.2 Solar Masses per year is estimated. The best fit to the SED is obtained for a starburst template with an age of 0.181^+0.037_-0.026 Gyr and a very low extinction (Av~0). We discuss the implications of the inferred low value of Av and the age of the dominant stellar population for the non detection of the GRB 000210 optical afterglow.Comment: 10 pages with 4 encapsulated PostScript figures included. Accepted for publication in Astronomy & Astrophysic

    The optical/near-IR spectral energy distribution of the GRB 000210 host galaxy

    Full text link
    We report on UBVRIZJsHKs-band photometry of the dark GRB 000210 host galaxy. Fitting a grid of spectral templates to its Spectral Energy Distribution (SED), we derived a photometric redshift (z=0.842\+0.0540.042) which is in excellent agreement with the spectroscopic one (z=0.8463+/-0.0002; Piro et al. 2002). The best fit to the SED is obtained with a blue starburst template with an age of 0.181\+0.0370.026 Gyr. We discuss the implications of the inferred low value of Av and the age of the dominant stellar population for the non detection of the GRB 000210 optical afterglow.Comment: 4 pages, 1 figure, contribution to the Rome 2002 GRB worksho

    NGC 2770 - a supernova Ib factory?

    Full text link
    NGC 2770 has been the host of three supernovae of Type Ib during the last 10 years, SN 1999eh, SN 2007uy and SN 2008D. SN 2008D attracted special attention due to the serendipitous discovery of an associated X-ray transient. In this paper, we study the properties of NGC 2770 and specifically the three SN sites to investigate whether this galaxy is in any way peculiar to cause a high frequency of SNe Ib. We model the global SED of the galaxy from broadband data and derive a star-formation and SN rate comparable to the values of the Milky Way. We further study the galaxy using longslit spectroscopy covering the major axis and the three SN sites. From the spectroscopic study we find subsolar metallicities for the SN sites, a high extinction and a moderate star-formation rate. In a high resolution spectrum, we also detect diffuse interstellar bands in the line-of-sight towards SN 2008. A comparison of NGC 2770 to the global properties of a galaxy sample with high SN occurance (at least 3 SN in the last 100 years) suggests that NGC 2770 is not particularly destined to produce such an enhancement of observed SNe observed. Its properties are also very different from gamma-ray burst host galaxies. Statistical considerations on SN Ib detection rates give a probability of ~1.5% to find a galaxy with three Ib SNe detected in 10 years. The high number of rare Ib SNe in this galaxy is therefore likely to be a coincidence rather than special properties of the galaxy itself. NGC 2770 has a small irregular companion, NGC 2770B, which is highly starforming, has a very low mass and one of the lowest metallicities detected in the nearby universe as derived from longslit spectroscopy. In the most metal poor part, we even detect Wolf-Rayet features, against the current models of WR stars which require high metallicities.Comment: 15 pages, 10 figures, submitted to Ap
    corecore