112 research outputs found

    Review of South African experience in rural electrification

    Get PDF

    Feasibility and Acute Care Utilization Outcomes of a Post-Acute Transitional Telemonitoring Program for Underserved Heart Failure Patients

    Full text link
    BackgroundChronic obstructive pulmonary disease (COPD) and heart failure (HF) are chronic diseases that impart significant health and care costs to the patient and health system. Limited access to health services affects disease severity and functional status. Telemonitoring has shown promise in reducing acute care utilization for chronic disease patients, but the benefit for the underserved has not been determined. We evaluated acute care utilization outcomes following an acute event of a 90-day transitional care program integrating telemonitoring technology and home visits for underserved COPD and HF patients.Materials and methodsPatients were enrolled into the program between October 2010 and August 2012. Primary outcomes included rates of emergency department (ED) visits and all-cause re-admission at 30, 90, and 180 days postdischarge. Program and functional status at enrollment and discharge and satisfaction with telemonitoring at discharge were measured. Telemonitoring included daily symptomatology recording and was removed at 90 days. A control cohort was identified through electronic health records and propensity-matched via 15 variables to achieve a sample size with balanced baseline characteristics.ResultsProgram patients showed 50% reduction in 30-day re-admission and 13-19% reduction in 180-day re-admission compared with control patients. There was no significant difference in ED utilization. Patients were satisfied with telemonitoring services, and functional status improved by program end.ConclusionsThis feasibility study suggests telemonitoring in the context of a transitional care model following an acute event may reduce all-cause 30-day re-admissions by up to 50% and has the potential to reduce long-term acute care utilization and thus care costs. More rigorous and long-term investigation is warranted

    Feasibility and Acute Care Utilization Outcomes of a Post-Acute Transitional Telemonitoring Program for Underserved Chronic Disease Patients

    Full text link
    Background: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) are chronic diseases that impart significant health and care costs to the patient and health system. Limited access to health services affects disease severity and functional status. Telemonitoring has shown promise in reducing acute care utilization for chronic disease patients, but the benefit for the underserved has not been determined. We evaluated acute care utilization outcomes following an acute event of a 90-day transitional care program integrating telemonitoring technology and home visits for underserved COPD and HF patients. Materials and Methods: Patients were enrolled into the program between October 2010 and August 2012. Primary outcomes included rates of emergency department (ED) visits and all-cause re-admission at 30, 90, and 180 days postdischarge. Program and functional status at enrollment and discharge and satisfaction with telemonitoring at discharge were measured. Telemonitoring included daily symptomatology recording and was removed at 90 days. A control cohort was identified through electronic health records and propensity-matched via 15 variables to achieve a sample size with balanced baseline characteristics. Results: Program patients showed 50% reduction in 30-day re-admission and 13–19% reduction in 180-day re-admission compared with control patients. There was no significant difference in ED utilization. Patients were satisfied with telemonitoring services, and functional status improved by program end. Conclusions: This feasibility study suggests telemonitoring in the context of a transitional care model following an acute event may reduce all-cause 30-day re-admissions by up to 50% and has the potential to reduce longterm acute care utilization and thus care costs. More rigorous and long-term investigation is warranted

    What Does Brain Response to Neutral Faces Tell Us about Major Depression? Evidence from Machine Learning and fMRI

    Get PDF
    Introduction: A considerable number of previous studies have shown abnormalities in the processing of emotional faces in major depression. Fewer studies, however, have focused specifically on abnormal processing of neutral faces despite evidence that depressed patients are slow and less accurate at recognizing neutral expressions in comparison with healthy controls. The current study aimed to investigate whether this misclassification described behaviourally for neutral faces also occurred when classifying patterns of brain activation to neutral faces for these patients. Methods: Two independent depressed samples: (1) Nineteen medication-free patients with depression and 19 healthy volunteers and (2) Eighteen depressed individuals and 18 age and gender-ratio-matched healthy volunteers viewed emotional faces (sad/neutral; happy/neutral) during an fMRI experiment. We used a new pattern recognition framework: first, we trained the classifier to discriminate between two brain states (e.g. viewing happy faces vs. viewing neutral faces) using data only from healthy controls (HC). Second, we tested the classifier using patterns of brain activation of a patient and a healthy control for the same stimuli. Finally, we tested if the classifier's predictions (predictive probabilities) for emotional and neutral face classification were different for healthy controls and depressed patients. Results: Predictive probabilities to patterns of brain activation to neutral faces in both groups of patients were significantly lower in comparison to the healthy controls. This difference was specific to neutral faces. There were no significant differences in predictive probabilities to patterns of brain activation to sad faces (sample 1) and happy faces (samples 2) between depressed patients and healthy controls. Conclusions: Our results suggest that the pattern of brain activation to neutral faces in depressed patients is not consistent with the pattern observed in healthy controls subject to the same stimuli. This difference in brain activation might underlie the behavioural misinterpretation of the neutral faces content by the depressed patients. © 2013 Oliveira et al

    Satellite Sensor Requirements for Monitoring Essential Biodiversity Variables of Coastal Ecosystems

    Get PDF
    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibratio

    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Applications 28 (2018): 749-760, doi: 10.1002/eap.1682.The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.National Center for Ecological Analysis and Synthesis (NCEAS); National Aeronautics and Space Administration (NASA) Grant Numbers: NNX16AQ34G, NNX14AR62A; National Ocean Partnership Program; NOAA US Integrated Ocean Observing System/IOOS Program Office; Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM) Grant Number: MC15AC0000

    B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans

    Get PDF
    Engagement of cytokine receptors by specific ligands activate Janus kinase–signal transducer and activator of transcription (STAT) signaling pathways. The exact roles of STATs in human lymphocyte behavior remain incompletely defined. Interleukin (IL)-21 activates STAT1 and STAT3 and has emerged as a potent regulator of B cell differentiation. We have studied patients with inactivating mutations in STAT1 or STAT3 to dissect their contribution to B cell function in vivo and in response to IL-21 in vitro. STAT3 mutations dramatically reduced the number of functional, antigen (Ag)-specific memory B cells and abolished the ability of IL-21 to induce naive B cells to differentiate into plasma cells (PCs). This resulted from impaired activation of the molecular machinery required for PC generation. In contrast, STAT1 deficiency had no effect on memory B cell formation in vivo or IL-21–induced immunoglobulin secretion in vitro. Thus, STAT3 plays a critical role in generating effector B cells from naive precursors in humans. STAT3-activating cytokines such as IL-21 thus underpin Ag-specific humoral immune responses and provide a mechanism for the functional antibody deficit in STAT3-deficient patients

    The Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression

    Get PDF
    The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species

    Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk

    Get PDF
    In breast cancer, high levels of homeobox protein Hox-B13 (HOXB13) have been associated with disease progression of ER-positive breast cancer patients and resistance to tamoxifen treatment. Since HOXB13 p.G84E is a prostate cancer risk allele, we evaluated the association between HOXB13 germline mutations and breast cancer risk in a previous study consisting of 3,270 familial non-BRCA1/2 breast cancer cases and 2,327 controls from the Netherlands. Although both recurrent HOXB13 mutations p.G84E and p.R217C were not associated with breast cancer risk, the risk estimation for p.R217C was not very precise. To provide more conclusive evidence regarding the role of HOXB13 in breast cancer susceptibility, we here evaluated the association between HOXB13 mutations and increased breast cancer risk within 81 studies of the international Breast Cancer Association Consortium containing 68,521 invasive breast cancer patients and 54,865 controls. Both HOXB13 p.G84E and p.R217C did not associate with the development of breast cancer in European women, neither in the overall analysis (OR = 1.035, 95% CI = 0.859-1.246, P = 0.718 and OR = 0.798, 95% CI = 0.482-1.322, P = 0.381 respectively), nor in specific high-risk subgroups or breast cancer subtypes. Thus, although involved in breast cancer progression, HOXB13 is not a material breast cancer susceptibility gene.Peer reviewe

    Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials.

    Get PDF
    Funder: laura and john arnold foundationBACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care
    corecore