1,089 research outputs found

    Estimation of Aneurysm Wall Motion from 4D Computerized Tomographic Angiography Images

    Get PDF
    It is widely accepted that wall shear stressis associated to aneurysm formation, growthand rupture. Early identification of potential risk factors may contribute to decide the treatment and improve patient care. Previous studies have shown associations between high aneurysm wall shear stress values and both elevated risk of rupture and localization of regions of aneurysm progression. Based on the assumption that damaged regions of the endothelium have different mechanical properties, regions with differentiated wall displacement amplitudes are expected. A previous approach based on the analysis ofbidimensional dynamic tomographic angiography images at a limited number of points during the cardiac cycle showed only small displacements in some patients using that simplified and semi-automatic low resolution methodology. The purpose of this work is to overcome some of those limitations. High time and spatial resolution four dimensional computerized tomographic angiography images of cerebral aneurysms were acquired and analyzed in order to identify and characterize wall motion. Images were filtered andsegmented at nineteentime points during the cardiac cycle.An average image was computed to generate the vascular model. Anunstructured mesh of tetrahedral elements was generated using an advancing front technique. A finite element blood flow simulationwas carried out under personalized pulsatile flow conditions. A fuzzy c-means clustering algorithm was used to estimate regions that exhibit wall motion within the aneurysm sac. A good correlation between localization of regions of elevated wall shear stress and regionsexhibiting wall motion was found.Fil: Castro, Marcelo Adrian. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ahumada Olivares, María C.. Universidad Favaloro; ArgentinaFil: Putman, Christopher M. . Inova Fairfax Hospital. Department of Interventional Neuroradiology; Estados UnidosFil: Cebral, Juan R.. George Mason University. Department of Computational and Data Sciences; Estados Unido

    Particulate blood analogues reproducing the erythrocytes cell-free layer in a microfluidic device containing a hyperbolic contraction

    Get PDF
    The interest in the development of blood analogues has been increasing recently as a consequence of the increment in the number of experimental hemodynamic studies and the difficulties associated with the manipulation of real blood in vitro because of ethical, economical or hazardous issues. Although one-phase Newtonian and non-Newtonian blood analogues can be found in the literature, there are very few studies related to the use of particulate solutions in which the particles mimic the behaviour of the red blood cells (RBCs) or erythrocytes. One of the most relevant effects related with the behaviour of the erythrocytes is a cell-free layer (CFL) formation, which consists in the migration of the RBCs towards the center of the vessel forming a cell depleted plasma region near the vessel walls, which is known to happen in in vitro microcirculatory environments. Recent studies have shown that the CFL enhancement is possible with an insertion of contraction and expansion region in a straight microchannel. These effects are useful for cell manipulation or sorting in lab-on-chip studies. In this experimental study we present particulate Newtonian and non-Newtonian solutions which resulted in a rheological blood analogue able to form a CFL, downstream of a microfluidic hyperbolic contraction, in a similar way of the one formed by healthy RBCs.The authors acknowledge the financial support provided by Fundação para a Ciência e a Tecnologia (FCT), COMPETE and FEDER through projects PTDC/SAU-BEB/105650/2008, PTDC/SAU-ENB/116929/2010, PTDC/EQU-FTT/118716/2010, EXPL/EMS-SIS/2215/2013, EXPL/EMS-TRA/2306/2013, fellowships SFRH/BD/89077/2012, SFRH/BPD/69663/2010 and SFRH/BPD/69664/2010 and grants IF/00148/2013 and IF/00190/2013.info:eu-repo/semantics/publishedVersio

    Wall Orientation and Shear Stress in the Lattice Boltzmann Model

    Full text link
    The wall shear stress is a quantity of profound importance for clinical diagnosis of artery diseases. The lattice Boltzmann is an easily parallelizable numerical method of solving the flow problems, but it suffers from errors of the velocity field near the boundaries which leads to errors in the wall shear stress and normal vectors computed from the velocity. In this work we present a simple formula to calculate the wall shear stress in the lattice Boltzmann model and propose to compute wall normals, which are necessary to compute the wall shear stress, by taking the weighted mean over boundary facets lying in a vicinity of a wall element. We carry out several tests and observe an increase of accuracy of computed normal vectors over other methods in two and three dimensions. Using the scheme we compute the wall shear stress in an inclined and bent channel fluid flow and show a minor influence of the normal on the numerical error, implying that that the main error arises due to a corrupted velocity field near the staircase boundary. Finally, we calculate the wall shear stress in the human abdominal aorta in steady conditions using our method and compare the results with a standard finite volume solver and experimental data available in the literature. Applications of our ideas in a simplified protocol for data preprocessing in medical applications are discussed.Comment: 9 pages, 11 figure

    Training school teachers to promote mental and social well-being in low and middle income countries : lessons to facilitate scale-up from a participatory action research trial of youth first in India

    Get PDF
    Mental and social wellbeing (MSWB) promotion programs could improve mental health and other outcomes for youth in Low and Middle Income Countries (LMICs). Unfortunately, few such programs have progressed to scale-up and few studies have detailed processes and considerations that could facilitate doing so. This study begins to fill these gaps, describing key findings from training and supporting government middle school teachers to deliver the Youth First Resilience Curriculum, a MSWB promotion program, in Bihar, India. We conducted a Participatory Action Research trial of the resilience curriculum among 792 middle school youth and 55 teachers at 15 government schools. Participant-observations, exit interviews, and group discussions were conducted and analyzed via multiple rounds of coding to generate thematic findings. A number of schools showed relatively high levels of interest, session reliability and fidelity, student interaction and teacher facilitative abilities, but there was great variation within the sample. Three leverage points emerged to facilitate future scale-up: factors for successful site assessment and program initiation, supporting teacher success via interest and motivation, and responding to varied teacher skill levels. These points represent critical focus areas for practitioners and policy-makers as more MSWB promotion programs begin to scale in LMICs.peer-reviewe

    Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration

    Get PDF
    Peripheral nerve injuries have produced major concerns in regenerative medicine for several years, as the recovery of normal nerve function continues to be a significant clinical challenge. Chitosan (CHT), because of its good biocompatibility, biodegradability and physicochemical properties, has been widely used as a biomaterial in tissue engineering scaffolding. In this study, CHT membranes were produced with three different Degrees of Acetylation (DA), envisioning its application in peripheral nerve regeneration. The three CHT membranes (DA I: 1%, DA II: 2%, DA III: 5%) were extensively characterized and were found to have a smooth and flat surface, with DA III membrane having slightly higher roughness and surface energy. All the membranes presented suitable mechanical properties and did not show any signs of calcification after SBF test. Biodegradability was similar for all samples, and adequate to physically support neurite outgrowth. The in vitro cell culture results indicate selective cell adhesion. The CHT membranes favoured Schwann cells invasion and proliferation, with a display of appropriate cytoskeletal morphology. At the same time they presented low fibroblast infiltration. This fact may be greatly beneficial for the prevention of fibrotic tissue formation, a common phenomenon impairing peripheral nerve regeneration. The great deal of results obtained during this work permitted to select the formulation with the greatest potential for further biological tests.This work has received funding from the European Community's Seventh Framework Programme (FP7-HEALTH-2011) under grant agreement no 278612 (BIOHYBRID). This study was also funded by European Union's FP7 Programme under grant agreement no REGPOT-CT2012-316331-POLARIS.The authors thank the chitosan raw material provided by Altakitin S.A., (Lisboa, Portugal). We are further thankful to Silke Fischer, Natascha Heidrich, Kerstin Kuhlemann, Jennifer Metzen, Hildegard Streich and Maike Wesemann (all from the Institute of Neuroanatomy, Hannover Medical School) for their technical support

    Editorial: 3D Modelling of Mammalian Embryos and Organs

    Get PDF
    The main scope of this Special issue was to gain understanding on how tissues and organs are arranged into integrative hierarchical levels of complexity, from the molecular to the morphological organization. To understand the underlying complexity of the relationships among these levels during morphogenesis or in the adult we must learn how to resolve single-cell spatial relationships in the three-dimensional (3D) organisation of tissues, organs and even of the whole organisms.Fil: Garagna, Silvia. Universita Degli Studi Di Pavia; ItaliaFil: Cebral, Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Aréchaga, Juan. Universidad del País Vasco; EspañaFil: Zuccotti, Maurizio. Universita Degli Studi Di Pavia; Itali

    Hemodynamic characteristics at anterior communicating artery before aneurysm initiation using patient-specific finite element blood flow simulations

    Get PDF
    The anterior communicating artery (AComA) is a unique vascular location that receives blood from two sources of inflow and redistributes it toward the anterior part of the brain through two efferent arteries. It is widely accepted that complexity in the flow pattern is associated with the high rate of aneurysm formation in that location observed in large studies. A previous computational hemodynamic study showed a possible association between high maximum intraaneurysmal wall shear stress (WSS) at the systolic peak with rupture in a cohort of AComA aneurysms. In another study it was observed a connection between location of aneurysm blebs and regions of high WSS in models where blebs were virtually removed. The purpose of this work is to study associations between hemodynamic patterns and AComA aneurysm initiation by comparing hemodynamics between the aneurysm models and the normal model where the aneurysm was computationally removed. Vascular models of both right and left circulation were independently reconstructed from three-dimensional rotational angiography images using deformable models after image registration of both images, and later fused using a surface merging algorithm. Afterwards, the geometric models were used to generate high-quality volumetric finite element grids composed several million tetrahedral elements with an advancing front technique. For each patient the second anatomical model was created by digitally removing the aneurysm. It was iteratively achieved by applying a Laplacian smoothing filter and remeshing the surface. Finite element blood flow numerical simulations were performed for both the pathological and normal models under the same flow conditions. Personalized pulsatile flow conditions were imposed at the inlets of both models with use of the Womersley solution. The Navier-Stokes equations were numerically integrated by using a fully implicit finite-element formulation. From analysis of WSS distributions it was observed that aneurysms initiated in regions of high and moderate WSS in the counterpart normal models. Adjacent or close to those regions, low WSS portions of the arterial wall were not affected by the disease. These results are in line with previous reported observations at other vascular locations.Fil: Castro, Marcelo Adrian. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. George Mason University; Estados UnidosFil: Putman, Christopher M.. Inova Fairfax Hospital; Estados UnidosFil: Cebral, Juan Raúl. George Mason University; Estados Unido
    corecore