172 research outputs found

    A new ELISA kit which uses a combination of Plasmodium falciparum extract and recombinant Plasmodium vivax antigens as an alternative to IFAT for detection of malaria antibodies

    Get PDF
    BACKGROUND: The methods most commonly used to measure malarial antibody titres are the Indirect Fluorescence Antibody Test (IFAT), regarded as the gold standard, and the Enzyme-Linked ImmunoSorbent Assay (ELISA). The objective here was to assess the diagnostic performance, i.e. the sensitivity and specificity, of a new malaria antibody ELISA kit in comparison to IFAT. This new ELISA kit, the ELISA malaria antibody test (DiaMed), uses a combination of crude soluble Plasmodium falciparum extract and recombinant Plasmodium vivax antigens. METHODS: Two groups were used: 95 samples from malaria patients to assess the clinical sensitivity and 2,152 samples from blood donors, who had not been exposed to malaria, to assess the clinical specificity. RESULTS: The DiaMed ELISA test kit had a clinical sensitivity of 84.2% and a clinical specificity of 99.6% as compared with 70.5% and 99.6% respectively, using the IFAT method. The ELISA method was more sensitive than the IFAT method for P. vivax infections (75% vs. 25%). However, in 923 malaria risk donors the analytical sensitivity of the ELISA test was 40% and its specificity 98.3%, performances impaired by large numbers of equivocal results non-concordant between ELISA and IFAT. When the overall analytical performances of ELISA was compared to IFAT, the ELISA efficiency J index was 0.84 versus 0.71 for IFAT. Overall analytical sensitivity was 93.1% and the analytical specificity 96.7%. Overall agreement between the two methods reached 0.97 with a reliability k index of 0.64. CONCLUSION: The DiaMed ELISA test kit shows a good correlation with IFAT for analytical and clinical parameters. It may be an interesting method to replace the IFAT especially in blood banks, but further extensive investigations are needed to examine the analytical performance of the assay, especially in a blood bank setting

    A Role of the Fast ATP-gated P2X1 Cation Channel in Thrombosis of Small Arteries In Vivo

    Get PDF
    The P2X1 receptor is a fast ATP-gated cation channel expressed in blood platelets, where its role has been difficult to assess due to its rapid desensitization and the lack of pharmacological tools. In this paper, we have used P2X1−/− and wild-type mouse platelets, treated with apyrase to prevent desensitization, to demonstrate the function of P2X1 in the response to thrombogenic stimuli. In vitro, the collagen-induced aggregation and secretion of P2X1-deficient platelets was decreased, as was adhesion and thrombus growth on a collagen-coated surface, particularly when the wall shear rate was elevated. In vivo, the functional role of P2X1 could be demonstrated using two models of platelet-dependent thrombotic occlusion of small arteries, in which blood flow is characterized by a high shear rate. The mortality of P2X1−/− mice in a model of systemic thromboembolism was reduced and the size of mural thrombi formed after a laser-induced vessel wall injury was decreased as compared with normal mice, whereas the time for complete thrombus removal was shortened. Overall, the P2X1 receptor appears to contribute to the formation of platelet thrombi, particularly in arteries in which shear forces are high

    Contributions to nonlinear elliptic equations and systems: a tribute to Djairo Guedes de Figueiredo on the occasion of his 80th birthday

    Get PDF
    This volume of contributions pays tribute to the life and work of Djairo Guedes de Figueiredo on the occasion of his 80th birthday. The articles it contains were born out of the ICMC Summer Meeting on Differential Equations – 2014 Chapter, also dedicated to de Figueiredo and held at the Universidade de São Paulo at São Carlos, Brazil from February 3-7, 2014. The contributing authors represent a group of international experts in the field and discuss recent trends and new directions in nonlinear elliptic partial differential equations and systems. Djairo Guedes de Figueiredo has had a very active scientific career, publishing 29 monographs and over one hundred research articles. His influence on Brazilian mathematics has made him one of the pillars of the subject in that country. He had a major impact on the development of analysis, especially in its application to nonlinear elliptic partial differential equations and systems throughout the entire world. The articles collected here pay tribute to him and his legacy, and are intended for graduate students and researchers in mathematics and related areas who are interested in nonlinear elliptic partial differential equations and systems

    The sub-supersolution method for Kirchhoff systems: applications

    Get PDF
    In this paper we prove that the sub-supersolution method works for general Kirchhoff systems. We apply the cited method to prove the existence of positive solutions for some specific models

    The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice

    Get PDF
    Pancreatic ÎČ cells express several P2 receptors including P2Y1 and the modulation of insulin secretion by extracellular nucleotides has suggested that these receptors may contribute to the regulation of glucose homeostasis. To determine whether the P2Y1 receptor is involved in this process, we performed studies in P2Y1 mice. In baseline conditions, P2Y1-mice exhibited a 15% increase in glycemia and a 40% increase in insulinemia, associated with a 10% increase in body weight, pointing to a role of the P2Y1 receptor in the control of glucose metabolism. Dynamic experiments further showed that P2Y1-mice exhibited a tendency to glucose intolerance. These features were associated with a decrease in the plasma levels of free fatty acid and triglycerides. When fed a lipids and sucrose enriched diet for 15 weeks, the two genotypes no longer displayed any significant differences. To determine whether the P2Y1 receptor was directly involved in the control of insulin secretion, experiments were carried out in isolated Langerhans islets. In the presence of high concentrations of glucose, insulin secretion was significantly greater in islets from P2Y1-mice. Altogether, these results show that the P2Y1 receptor plays a physiological role in the maintenance of glucose homeostasis at least in part by regulating insulin secretion

    Self-Reactivities to the Non-Erythroid Alpha Spectrin Correlate with Cerebral Malaria in Gabonese Children

    Get PDF
    BACKGROUND: Hypergammaglobulinemia and polyclonal B-cell activation commonly occur in Plasmodium sp. infections. Some of the antibodies produced recognize self-components and are correlated with disease severity in P. falciparum malaria. However, it is not known whether some self-reactive antibodies produced during P. falciparum infection contribute to the events leading to cerebral malaria (CM). We show here a correlation between self-antibody responses to a human brain protein and high levels of circulating TNF alpha (TNFα), with the manifestation of CM in Gabonese children. METHODOLOGY: To study the role of self-reactive antibodies associated to the development of P. falciparum cerebral malaria, we used a combination of quantitative immunoblotting and multivariate analysis to analyse correlation between the reactivity of circulating IgG with a human brain protein extract and TNFα concentrations in cohorts of uninfected controls (UI) and P. falciparum-infected Gabonese children developing uncomplicated malaria (UM), severe non-cerebral malaria (SNCM), or CM. RESULTS/CONCLUSION: The repertoire of brain antigens recognized by plasma IgGs was more diverse in infected than in UI individuals. Anti-brain reactivity was significantly higher in the CM group than in the UM and SNCM groups. IgG self-reactivity to brain antigens was also correlated with plasma IgG levels and age. We found that 90% of CM patients displayed reactivity to a high-molecular mass band containing the spectrin non-erythroid alpha chain. Reactivity with this band was correlated with high TNFα concentrations in CM patients. These results strongly suggest that an antibody response to brain antigens induced by P. falciparum infection may be associated with pathogenic mechanisms in patients developing CM

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
    • 

    corecore