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1 Introduction

In this note we study the existence of solutions of a nonlinear Kirchhoff system
−M1(‖u1‖2)∆u1 = f1(x, u1, u2) in Ω,

−M2(‖u2‖2)∆u2 = f2(x, u1, u2) in Ω,

u1 = u2 = 0 on ∂Ω,

(1.1)

where Ω ⊂ IRN , N ≥ 1, is a regular and bounded domain,

‖u‖2 :=
∫

Ω
|∇u|2dx, for u ∈ H1

0 (Ω),

Mi, i = 1, 2 are continuous functions verifying

(M) Mi : IR+ 7→ IR+ and ∃m0 > 0 such that Mi(t) ≥ m0 > 0 ∀t ∈ IR+,

and fi ∈ C(Ω× IR2). We assume (M) along the paper.
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2 Systems of Kirchhoff type

Basically, in our knowledge, similar systems to (1.1) have been analyzed in several
papers. In [8], [3], [4], [6], [10] and references therein, variational methods have been
applied to prove existence and multiplicity of positive solutions for systems as (1.1). In
[1] and [2] the sub-supersolution method has been used to prove the existence of solution
with Mi increasing and bounded from above and below for positive constants, that is,
there exist positive constants 0 < mi ≤ m∞i <∞ such that

0 < mi ≤Mi(t) ≤ m∞i <∞ i = 1, 2, ∀t ≥ 0.

However, in both papers the authors use a comparison principle (see for instance Lemma
2.1 in [1]) which seems not to be correct, see [5].

In this paper, we prove that the sub-supersolution method works for system (1.1),
when the sub-supersolution is defined in an appropriate way, see Theorem 3.3. Indeed, in
this case, the definition of sub-supersolution depends on the monotony of the non-linear
reaction term (in a similar way to the local problems, see for instance [9]) and on the
functions Mi. In order to prove this result, we transform our Kirchhoff system (1.1) into
another with general non-local term depending only on the unknown variable ui but not
the ‖ui‖2. So, as consequence, we establish a very general sub-supersolution method for
for a large class of systems with nonlinear and non-local terms (see Theorem 2.2).

The paper is organized as follows. In Section 2 we show that the sub-supersolution
method works for general non-local systems. In Section 3, under very general conditions
on Mi, we transform our system (1.1) into a non-local systems, and apply the method of
Section 2. Section 4 is devoted to apply our method for different particular systems.

2 The sub-super method for non-local systems

First of all we show that the sub-supersolution method works well for non-local systems
of the following type

−∆u1 = g1(x, u1, u2, B1(u1), B2(u2), C1(u1, u2)) in Ω,

−∆u2 = g2(x, u1, u2, B1(u1), B2(u2), C2(u1, u2)) in Ω,

u1 = u2 = 0 on ∂Ω,

(2.1)

where gi : Ω × IR5 7→ IR is a continuous function, Bi : L∞(Ω) 7→ IR, Ci : (L∞(Ω))2 7→ IR
are continuous operators. Given w ≤ z a.e. in Ω, we denote by

[w, z] := {u : w(x) ≤ u(x) ≤ z(x) a.e. x ∈ Ω}.

Definition 2.1. We say that the pair (u1, u1), (u2, u2), with ui, ui ∈ H1(Ω) ∩ L∞(Ω), is
a pair of sub-supersolution of (2.1) if

1. ui ≤ ui in Ω and ui ≤ 0 ≤ ui on ∂Ω for i = 1, 2,

2.

−∆u1−g1(x, u1, v, B1(u), B2(v), C1(u, v)) ≤ 0 ≤ −∆u1−g1(x, u1, v, B1(u), B2(v), C1(u, v))

in the weak sense for all (u, v) ∈ [u1, u1]× [u2, u2].
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3.

−∆u2−g2(x, u, u2, B1(u), B2(v), C2(u, v)) ≤ 0 ≤ −∆u2−g2(x, u, u2, B1(u), B2(v), C2(u, v))

in the weak sense for all (u, v) ∈ [u1, u1]× [u2, u2].

The main result in this section is:

Theorem 2.2. Assume that there exists a pair of sub-supersolution of (2.1) in the sense
of Definition 2.1. Then, there exists a solution (u1, u2) ∈ (H1

0 (Ω)∩L∞(Ω))2 of (2.1) such
that ui ∈ [ui, ui], i = 1, 2.

Proof. For i = 1, 2, define the truncation operators

Tiu(x) :=


ui(x) if u(x) ≥ ui(x),

u(x) if ui(x) ≤ u(x) ≤ ui(x),

ui(x) if u(x) ≤ ui(x),

(2.2)

and the Nemytskii operators Fi : (L∞(Ω))2 7→ L∞(Ω) given by

Fi(u1, u2)(x) := gi(x, T1(u1)(x), T2(u2)(x), B1(T1(u1)), B2(T2(u2)), Ci(T1(u1), T2(u2))).

It is clear that Fi is continuous and bounded, because there exists M > 0 such that

‖Fi(u1, u2)‖∞ ≤M for all u1, u2 ∈ L∞(Ω).

Consider the problem 
−∆w1 = F1(u1, u2) in Ω,

−∆w2 = F2(u1, u2) in Ω,

w1 = w2 = 0 on ∂Ω.

(2.3)

We can define the operator T by (u1, u2) 7→ (w1, w2) := T (u1, u2) being (w1, w2) the
unique solution of (2.3). It is clear that T is well-defined, it is a compact operator and
T (BM ) ⊂ BM for some M > 0, where BM denotes the ball in (L∞(Ω))2 centered in
(0, 0) and radius M . Hence, by the Schauder Fixed Point Theorem there exists (u1, u2) ∈
(L∞(Ω))2 such that (u1, u2) = T (u1, u2), and then

−∆u1 = F1(u1, u2) in Ω,

−∆u2 = F2(u1, u2) in Ω,

u1 = u2 = 0 on ∂Ω.

(2.4)

Now, we show that ui ∈ [ui, ui], which implies that (u1, u2) is solution of (2.1). Let us
show that

u1 ≤ u1 in Ω,

the other inequalities can be proved similarly. Indeed, in the definition of supersolution of
u1 we can take u = T1(u1), v = T2(u2) and then,

−∆u1 ≥ g1(x, u1, T2(u2), B1(T1(u1)), B2(T2(u2)), C1(T1(u1), T2(u2))),
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and so, denoting z := u1 − u1 we get

−∆z ≥ g1(x, u1, T2(u2), B1(T1(u1)), B2(T2(u2)), C1(T1(u1), T2(u2)))− F (u1, u1)

= g1(x, u1, T2(u2), B1(T1(u1)), B2(T2(u2)), C1(T1(u1), T2(u2)))

−g1(x, T1(u1)(x), T2(u2)(x), B1(T1(u1)), B2(T2(u2)), C1(T1(u1), T2(u2))).

Now, multiplying by (u1 − u1)− we obtain∫
Ω
|∇(u1 − u1)−|2 ≤ 0,

whence we conclude the result.

3 The sub-supersolution for Kirchhoff systems

First, we are going to transform (1.1) into a nonlocal system as (2.1). Indeed, define

Ni(t) := Mi(t)t

and assume that Ni is invertible, and so define

Gi(t) = N−1
i (t).

Finally, define the non-local operators Ri : (L∞(Ω))2 7→ IR by

Ri(u1, u2) = Mi

(
Gi

(∫
Ω
fi(x, u1, u2)ui

))
.

Lemma 3.1. Assume that

(N) Ni, i = 1, 2 are invertible.

Then, (1.1) is equivalent to
−∆u1 = F1(x, u1, u2, C1(u1, u2)) in Ω,

−∆u2 = F2(x, u1, u2, C2(u1, u2)) in Ω,

u1 = u2 = 0 on ∂Ω,

(3.1)

where
Ci(u1, u2) = Ri(u1, u2), Fi(x, t1, t2, r) =

fi(x, t1, t2)
r

, i = 1, 2.

Proof. Assume that (u1, u2) is solution of (1.1). Multiplying (1.1) by ui and integrating,
we get

Mi(‖ui‖2)‖ui‖2 =
∫

Ω
fi(x, u1, u2)ui,

and then,

‖ui‖2 = Gi

(∫
Ω
fi(x, u1, u2)ui

)
=⇒Mi(‖ui‖2) = Ri(u1, u2).
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By (M), Ri(u1, u2) ≥ m0 and then we can divide by Ri(u1, u2). Hence, we conclude that
(u1, u2) is solution of (3.1).

Reciprocally, if (u1, u2) is solution of (3.1), then multiplying by ui we obtain

‖ui‖2 =

∫
Ω fi(x, u1, u2)ui
Ri(u1, u2)

=

∫
Ω fi(x, u1, u2)ui

Mi(Gi(
∫

Ω fi(x, u1, u2)ui)
= Gi

(∫
Ω
fi(x, u1, u2)ui

)
,

where we have used that Ni ◦Gi(t) = t, that is Mi(Gi(t))Gi(t) = t. Applying Mi in that
above equality we get

Mi(‖ui‖2) = Ri(u1, u2),

and so (u1, u2) is solution of (1.1). This completes the proof.

As consequence of this result and Theorem 2.2, we have the following results.

Definition 3.2. We say that the pair (u1, u1), (u2, u2), with ui, ui ∈ H1(Ω) ∩ L∞(Ω), is
a pair of sub-supersolution of (1.1) if

1. ui ≤ ui in Ω and ui ≤ 0 ≤ ui on ∂Ω for i = 1, 2,

2.
−R1(u, v)∆u1 − f1(x, u1, v) ≤ 0 ≤ −R1(u, v)∆u1 − f1(x, u1, v)

in the weak sense for all (u, v) ∈ [u1, u1]× [u2, u2].

3.
−R2(u, v)∆u2 − f2(x, u, u2) ≤ 0 ≤ −R2(u, v)∆u2 − f2(x, u, u2)

in the weak sense for all (u, v) ∈ [u1, u1]× [u2, u2].

Theorem 3.3. Assume (M) and (N). If there exists a pair of sub-supersolution of (3.1)
in the sense of Definition 3.2, then there exists a solution (u1, u2) of (1.1) such that
(u1, u2) ∈ [u1, u1]× [u2, u2].

Remark 3.4. Observe that if Mi is increasing, then it verifies (N).

4 Applications

4.1 Non-local Lotka-Volterra models

Consider the classical diffusive Lotka-Volterra model with non-local interaction
−∆u1 = u1(λ− u1 − b

∫
Ω
u2) in Ω,

−∆u2 = u2(µ− u2 − c
∫

Ω
u1) in Ω,

u1 = u2 = 0 on ∂Ω,

(4.1)

where λ, µ ∈ IR and b, c ∈ IR. Here, u1 and u2 denote two species inhabiting in Ω, the
habitat, which is surrounded by inhospitable areas. Here, λ and µ represent the intrinsic
growth rates of each species, and b, c the interaction rates between the species: if both b
and c are positive numbers the species compete, if both are negative they cooperate and
finally in the case b > 0 and c < 0, u1 denotes the prey and u2 the predator. The main
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novelty in (4.1) is that this interaction is non-local, that is, the interaction between both
species at the point x ∈ Ω not only depends on the value at x but the value to the entire
domain Ω, see [7].

In order to enunciate the main result, we need introduce some notation. Denote
by ϕ > 0 the eigenfunction associated to λ1, the principal eigenvalue of the −∆ under
Dirichlet boundary conditions, such that ‖ϕ‖∞ = 1. It is well-known that the classical
logistic equation  −∆w = w(γ − w) in Ω,

w = 0 on ∂Ω,
(4.2)

possesses a unique positive solution if and only if γ > λ1. In such case, the positive
solution is unique. We denote it by θγ . We prolong the definition of θγ ≡ 0 when γ ≤ λ1.
It is well-known that γ 7→ θγ is increasing in γ and that θγ ≤ γ.

Theorem 4.1. 1. Assume that b, c > 0. Then, (4.1) possesses at least a positive solu-
tion if

λ− b
∫

Ω
θµ > λ1 and µ− c

∫
Ω
θλ > λ1. (4.3)

2. Assume that b, c < 0 and bc|Ω|2 < 1. Then, (4.1) possesses at least a positive solution
if (λ, µ) verifies condition (4.3).

3. Assume b > 0, c < 0 and

λ− b|Ω|(µ+ c

∫
Ω
θλ) > λ1 and µ > λ1. (4.4)

Proof. 1. We can take as pair of sub-supersolution

(u1, u1) = (θλ−b ∫
Ω θµ

, θλ), (u2, u2) = (θµ−c ∫
Ω θλ

, θµ).

First, observe that u1 ≤ u1 and u2 ≤ u2 in Ω. Now, we have to verify four inequali-
ties. Let us only check two of them:

−∆u1 ≤ u1(λ− u1 − b
∫

Ω
u2), −∆u1 ≥ u1(λ− u1 − b

∫
Ω
u2).

Observe that

−∆u1 = −∆θλ−b ∫
Ω θµ

= θλ−b
∫
Ω θµ

(λ− b
∫

Ω
θµ − θλ−b ∫

Ω θµ
) = u1(λ− u1 − b

∫
Ω
u2).

On the other hand,

−∆u1 = −∆θλ = θλ(λ− θλ) ≥ θλ(λ− θλ − b
∫

Ω
u2) = u1(λ− u1 − b

∫
Ω
u2).

This completes the first paragraph.

2. In this case, take

(u1, u1) = (θλ−b ∫
Ω θµ

,M), (u2, u2) = (θµ−c ∫
Ω θλ

, N),

https://www.researchgate.net/publication/259578532_Influence_of_a_spatial_structure_on_the_long_time_behavior_of_a_competitive_Lotka-Volterra_type_system?el=1_x_8&enrichId=rgreq-cb9caa11cc9056c249b9b29981381621-XXX&enrichSource=Y292ZXJQYWdlOzMwMDIzNDc2MTtBUzozNjA5MTg3NjEzOTQxODNAMTQ2MzA2MTE0Njc5NA==
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where M,N are positive constants verifying

M ≥ λ− bN |Ω| and N ≥ µ− cM |Ω|,

which exist because bc|Ω|2 < 1.

We prove now that they are sub-supersolutions. Again we only show two inequalities:

−∆u1 ≤ u1(λ− u1 − b
∫

Ω
u2), −∆u1 ≥ u1(λ− u1 − b

∫
Ω
u2).

The first inequality is equivalent to

θµ ≤ θµ−c ∫
Ω θλ

,

and the second one to
0 ≥ λ−M − bN |Ω|.

Taking M and N large we get both inequalities and u1 ≤ u1 and u2 ≤ u2.

3. Take in this case
(u1, u1) = (εϕ, θλ), (u2, u2) = (θµ, N),

with ε,N > 0 to choose. Observe that N has to verify that N ≥ µ− c
∫

Ω u1, and so,
we can take

N = µ− c
∫

Ω
θλ.

It is clear that u1 and u2 verify the inequalities. Finally, we consider u1. It has to
verify that

λ1 ≤ λ− εϕ− bN |Ω|,

so, if λ − bN |Ω| > λ1 we can take ε small enough that the above inequality holds
and u1 ≤ u1. Finally, observe that since θµ ≤ µ < N we get that u2 ≤ u2.

4.2 Kirchhoff systems

Along this section, we assume that Mi verifies (M) and (N). We present different appli-
cations of Theorem 3.3. First, we study a system with concave nonlinearities

−M1(‖u1‖2)∆u1 = λuq11 + uq22 in Ω,

−M2(‖u2‖2)∆u2 = µup2
2 + up1

1 in Ω,

u1 = u2 = 0 on ∂Ω,

(4.5)

where λ, µ ∈ IR and 0 < qi, pi < 1.

Theorem 4.2. Assume that λ, µ > 0. Then, there exists a positive solution of (4.5).

Proof. We are going to build again a pair of sub-supersolution. Denote also by e the
unique positive solution of  −∆e = 1 in Ω,

e = 0 on ∂Ω.
(4.6)
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We show that (u1, u1) = (ε1ϕ,K1e) and (u2, u2) = (ε2ϕ,K2e) is a pair of sub-supersolution
of (4.5) taking the positive constants ε1, ε2,K1 and K2 in an appropriate way. We start
with u1. We need to verify that

−R1(u, v)∆u1 ≥ λuq11 + uq22 , ∀(u, v) ∈ [u1, u1]× [u2, u2].

Using (M), it suffices to show that

K1m0 ≥ λKq1
1 ‖e‖

q1
∞ +Kq2

2 ‖e‖
q2
∞.

Similarly for u2,
K2m0 ≥ µKp2

2 ‖e‖
p2
∞ +Kp1

1 ‖e‖
p1
∞.

Fix, K1 and K2 verifying above inequalities. Now, we study u1 and u2. They have to
verify

R1(u, v)λ1ε1ϕ ≤ λ(ε1ϕ)q1 + (ε2ϕ)q2 , ∀(u, v) ∈ [u1, u1]× [u2, u2],

R2(u, v)λ1ε2ϕ ≤ µ(ε2ϕ)p2 + (ε1ϕ)p1 , ∀(u, v) ∈ [u1, u1]× [u2, u2].

Since Ri is bounded in [0, u1]× [0, u2], it is clear that we can take ε1 and ε2 small enough,
and we conclude the result.

Finally, we consider the competition Kirchhoff model with local nonlinearities
−M1(‖u1‖2)∆u1 = u1(λ− u1 − bu2) in Ω,

−M2(‖u2‖2)∆u2 = u2(µ− u2 − cu1) in Ω,

u1 = u2 = 0 on ∂Ω,

(4.7)

where λ, µ ∈ IR and 0 < b, c. The meaning of the parameters were given at the beginning
of this Section.

Theorem 4.3. Assume that there exist positive constants m∞i , i = 1, 2, such that Mi ≤
m∞i , and

λ > bµ+ λ1m
∞
1 and µ > cλ+ λ1m

∞
2 .

Then, there exists a positive solution of (4.7).

Proof. We show that

(u1, u1) = (ε1ϕ,M1) and (u2, u2) = (ε2ϕ,M2)

is a pair of sub-supersolution of (4.7) taking positive constants ε1, ε2 small M1 = λ,
M2 = µ. Indeed, u1 is supersolution if

0 ≥ λ−M1 − bε2ϕ,

which is true for M1 = λ.
Consider now u1. The function u1 = ε1ϕ is subsolution provided of

R1(u, v)λ1ε1ϕ ≤ (ε1ϕ)(λ− ε1ϕ− bµ), ∀(u, v) ∈ [u1, u1]× [u2, u2],

for which it suffices λ > bµ+ λ1m
∞
1 . Analogously for u2 and u2.
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