169 research outputs found

    Geophysical characterization of derelict coalmine workings and mineshaft detection: a case study from Shrewsbury, United Kingdom

    Get PDF
    A study site of derelict coalmine workings near Shrewsbury, United Kingdom was the focus for multi‐phase, near‐surface geophysical investigations. Investigation objectives were: 1) site characterization for remaining relict infrastructure foundations, 2) locate an abandoned coalmine shaft, 3) determine if the shaft was open, filled or partially filled and 4) determine if the shaft was capped (and if possible characterize the capping material). Phase one included a desktop study and 3D microgravity modelling of the relict coalmine shaft thought to be on site. In phase two, electrical and electromagnetic surveys to determine site resistivity and conductivity were acquired together with fluxgate gradiometry and an initial microgravity survey. Phase three targeted the phase two geophysical anomalies and acquired high‐resolution self potential and ground penetrating radar datasets. The phased‐survey approach minimised site activity and survey costs. Geophysical results were compared and interpreted to characterize the site, the microgravity models were used to validate interpretations. Relict buildings, railway track remains with associated gravel and a partially filled coalmine shaft were located. Microgravity proved optimal to locate the mineshaft with radar profiles showing ‘side‐swipe’ effects from the mineshaft that did not directly underlie survey lines. Geophysical interpretations were then verified with subsequent geotechnical intrusive investigations. Comparisons of historical map records with intrusive geotechnical site investigations show care must be taken using map data alone, as the latter mineshaft locations was found to be inaccurate

    Accretion-ejection instability in magnetized disks: Feeding the corona with Alfven waves

    Get PDF
    We present a detailed calculation of the mechanism by which the Accretion-Ejection Instability can extract accretion energy and angular momentum from a magnetized disk, and redirect them to its corona. In a disk threaded by a poloidal magnetic field of the order of equipartition with the gas pressure, the instability is composed of a spiral wave (analogous to galactic ones) and a Rossby vortex. The mechanism detailed here describes how the vortex, twisting the footpoints of field lines threading the disk, generates Alfven waves propagating to the corona. We find that this is a very efficient mechanism, providing to the corona (where it could feed a jet or a wind) a substantial fraction of the accretion energy.Comment: accepted by A&

    Using automated imaging to interrogate gonadotrophin-releasing hormone receptor trafficking and function

    Get PDF
    Gonadotrophin-releasing hormone (GnRH) acts via seven transmembrane receptors on gonadotrophs to stimulate gonadotrophin synthesis and secretion, and thereby mediates central control of reproduction. Type I mammalian GnRHR are unique, in that they lack C-terminal tails. This is thought to underlie their resistance to rapid homologous desensitisation as well as their slow rate of internalisation and inability to provoke G-protein-independent (arrestin-mediated) signalling. More recently it has been discovered that the vast majority of human GnRHR are actually intracellular, in spite of the fact that they are activated at the cell surface by a membrane impermeant peptide hormone. This apparently reflects inefficient exit from the endoplasmic reticulum and again, the absence of the C-tail likely contributes to their intracellular localisation. This review is intended to cover some of these novel aspects of GnRHR biology, focusing on ways that we have used automated fluorescence microscopy (high content imaging) to explore GnRHR localisation and trafficking as well as spatial and temporal aspects of GnRH signalling via the Ca(2+)/calmodulin/calcineurin/NFAT and Raf/MEK/ERK pathways

    Local models of stellar convection II: Rotation dependence of the mixing length relations

    Full text link
    We study the mixing length concept in comparison to three-dimensional numerical calculations of convection with rotation. In a limited range, the velocity and temperature fluctuations are linearly proportional to the superadiabaticity, as predicted by the mixing length concept and in accordance with published results. The effects of rotation are investigated by varying the Coriolis number, Co = 2 Omega tau, from zero to roughly ten, and by calculating models at different latitudes. We find that \alpha decreases monotonically as a function of the Coriolis number. This can be explained by the decreased spatial scale of convection and the diminished efficiency of the convective energy transport, the latter of which leads to a large increase of the superadibaticity, \delta = \nabla - \nabla_ad as function of Co. Applying a decreased mixing length parameter in a solar model yields very small differences in comparison to the standard model within the convection zone. The main difference is the reduction of the overshooting depth, and thus the depth of the convection zone, when a non-local version of the mixing length concept is used. Reduction of \alpha by a factor of roughly 2.5 is sufficient to reconcile the difference between the model and helioseismic results. The numerical results indicate reduction of \alpha by this order of magnitude.Comment: Final published version, 8 pages, 9 figure

    A microquasar classification from a disk instability perspective

    Get PDF
    The spectacular variability of microquasars has led to a long string of efforts in order to classify their observed behaviors in a few states. The progress made in the understanding of the Quasi-Periodic Oscillations observed in these objects now makes it possible to develop a new way to find order in their behavior, based on the theorized physical processes associated with these oscillations. This will also have the interest of reuniting microquasars in a single classification based on the physical processes at work and therefore independent of their specificities (mass, variation timescale, outburst history, etc.). This classification is aimed to be a tool to further our understanding of microquasars behavior and not to replace phenomenological states. We start by considering three instabilities that can cause accretion in the disk. We compare the conditions for their development, and the Quasi-Periodic Oscillations they can be expected to produce, with the spectral states in which these Quasi-Periodic Oscillations are observed and sometimes coexist. From the three instabilities that we proposed to explain the three states of GRS 1915+105 we actually found the theoretical existence of four states. We compared those four states with observations and also how those four states can be seen in a model-independent fashion. Those four state can be used to find an order in microquasar observations, based on the properties of the Quasi-Periodic Oscillations and the physics of the associated instabilities.Comment: accepted by A&

    Local models of stellar convection: Reynolds stresses and turbulent heat transport

    Full text link
    We study stellar convection using a local three-dimensional MHD model, with which we investigate the influence of rotation and large-scale magnetic fields on the turbulent momentum and heat transport. The former is studied by computing the Reynolds stresses, the latter by calculating the correlation of velocity and temperature fluctuations, both as functions of rotation and latitude. We find that the horisontal correlation, Q_(theta phi), capable of generating horisontal differential rotation, is mostly negative in the southern hemisphere for Coriolis numbers exceeding unity, corresponding to equatorward flux of angular momentum in accordance with solar observations. The radial component Q_(r phi) is negative for slow and intermediate rotation indicating inward transport of angular momentum, while for rapid rotation, the transport occurs outwards. Parametrisation in terms of the mean-field Lambda-effect shows qualitative agreement with the turbulence model of Kichatinov & R\"udiger (1993) for the horisontal part H \propto Q_(theta phi)/cos(theta), whereas for the vertical part, V \propto Q_(r phi)/sin(theta), agreement only for intermediate rotation exists. The Lambda-coefficients become suppressed in the limit of rapid rotation, this rotational quenching being stronger for the V component than for H. We find that the stresses are enhanced by the presence of the magnetic field for field strengths up to and above the equipartition value, without significant quenching. Concerning the turbulent heat transport, our calculations show that the transport in the radial direction is most efficient at the equatorial regions, obtains a minimum at midlatitudes, and shows a slight increase towards the poles. The latitudinal heat transport does not show a systematic trend as function of latitude or rotation.Comment: 26 pages, 20 figures, final published version. For a version with higher resolution figures, see http://cc.oulu.fi/~pkapyla/publ.htm

    Dust in Brown Dwarfs IV. Dust formation and driven turbulence on mesoscopic scales

    Get PDF
    Dust formation in brown dwarf atmospheres is studied by utilising a model for driven turbulence in the mesoscopic scale regime. We apply a pseudo-spectral method where waves are created and superimposed within a limited wavenumber interval. The turbulent kinetic energy distribution follows the Kolmogoroff spectrum which is assumed to be the most likely value. Such superimposed, stochastic waves may occur in a convectively active environment. They cause nucleation fronts and nucleation events and thereby initiate the dust formation process which continues until all condensible material is consumed. Small disturbances are found to have a large impact on the dust forming system. An initially dust-hostile region, which may originally be optically thin, becomes optically thick in a patchy way showing considerable variations in the dust properties during the formation process. The dust appears in lanes and curls as a result of the interaction with waves, i.e. turbulence, which form larger and larger structures with time. Aiming on a physical understanding of the variability of brown dwarfs, related to structure formation in substellar atmospheres, we work out first necessary criteria for small-scale closure models to be applied in macroscopic simulations of dust forming astrophysical systems.Comment: A&A accepted, 20 page

    Accretion-ejection instability and QPO in black-hole binaries.II. Relativistic effects

    Get PDF
    The Accretion-Ejection Instability has been proposed to explain the low frequency Quasi-Periodic Oscillation (QPO) observed in low-mass X-Ray Binaries, in particular Black-Hole candidates. Its frequency, typically a fraction of the Keplerian frequency at the disk inner radius, is exactly in the range indicated by observations. The variations of the frequency with the disk inner radius (extracted from spectral fits of the X-ray emission) might thus be a useful test. In this paper we discuss how changes in the rotation curve, due to relativistic effects when the disk approaches the central object, affect the physics of the instability, and thus this frequency-inner radius relation. We find that the relationship between the frequency of the mode and the Keplerian frequency at the inner disk radius (rintr_{int}) departs from the one obtained in a Keplerian disk, when rintr_{int} approaches the last stable orbit. This might agree with the recently published results, showing a discrepancy between the behavior of the QPO in the micro quasar GRO J1655, compared to other sources such as XTE J1550 and GRS 1915. In a companion paper (Rodriguez et al., 2002, hereafter Paper I) we have presented detailed observational results for GRO J1655 and GRS 1915. We show how the opposite correlations found in these sources between the disk color radius (assumed to be close to its inner radius) and the QPO frequency could indeed be explained by our theoretical result.Comment: accepted by A&

    Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6

    Get PDF
    The cytoplasmic phosphatase DUSP6 and its nuclear counterpart DUSP5 are negative regulators of RAS/ERK signalling. Here we use deletion of either Dusp5 or Dusp6 to explore the roles of these phosphatases in a murine model of KRASG12D-driven pancreatic cancer. By 56-days, loss of either DUSP5 or DUSP6 causes a significant increase in KRASG12D-driven pancreatic hyperplasia. This is accompanied by increased pancreatic acinar to ductal metaplasia (ADM) and the development of pre-neoplastic pancreatic intraepithelial neoplasia (PanINs). In contrast, by 100-days, pancreatic hyperplasia is reversed with significant atrophy of pancreatic tissue and weight loss observed in animals lacking either DUSP5 or DUSP6. On further ageing, Dusp6−/− mice display accelerated development of metastatic pancreatic ductal adenocarcinoma (PDAC), while in Dusp5−/− animals, although PDAC development is increased this process is attenuated by atrophy of pancreatic acinar tissue and severe weight loss in some animals before cancer could progress. Our data suggest that despite a common target in the ERK MAP kinase, DUSP5 and DUSP6 play partially non-redundant roles in suppressing oncogenic KRASG12D signalling, thus retarding both tumour initiation and progression. Our data suggest that loss of either DUSP5 or DUSP6, as observed in certain human tumours, including the pancreas, could promote carcinogenesis

    Magnetoconvection and dynamo coefficients III: alpha-effect and magnetic pumping in the rapid rotation regime

    Full text link
    Aims. The alpha- and gamma-effects, which are responsible for the generation and turbulent pumping of large scale magnetic fields, respectively, due to passive advection by convection are determined in the rapid rotation regime corresponding to the deep layers of the solar convection zone. Methods. A 3D rectangular local model is used for solving the full set of MHD equations in order to compute the electromotive force (emf), E = , generated by the interaction of imposed weak gradient-free magnetic fields and turbulent convection with varying rotational influence and latitude. By expanding the emf in terms of the mean magnetic field, E_i = a_ij , all nine components of a_ij are computed. The diagonal elements of a_ij describe the alpha-effect, whereas the off-diagonals represent magnetic pumping. The latter is essentially the advection of magnetic fields by means other than the underlying large-scale velocity field. Comparisons are made to analytical expressions of the coefficients derived under the first-order smoothing approximation (FOSA). Results. In the rapid rotation regime the latitudinal dependence of the alpha-components responsible for the generation of the azimuthal and radial fields does not exhibit a peak at the poles, as is the case for slow rotation, but at a latitude of about 30 degrees. The magnetic pumping is predominantly radially down- and latitudinally equatorward as in earlier studies. The numerical results compare surprisingly well with analytical expressions derived under first-order smoothing, although the present calculations are expected to lie near the limits of the validity range of FOSA.Comment: 14 pages, 12 figures, accepted for publication in Astronomy & Astrophysic
    corecore