490 research outputs found

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe

    Coxiella burnetii, the Agent of Q Fever, Replicates within Trophoblasts and Induces a Unique Transcriptional Response

    Get PDF
    Q fever is a zoonosis caused by Coxiella burnetii, an obligate intracellular bacterium typically found in myeloid cells. The infection is a source of severe obstetrical complications in humans and cattle and can undergo chronic evolution in a minority of pregnant women. Because C. burnetii is found in the placentas of aborted fetuses, we investigated the possibility that it could infect trophoblasts. Here, we show that C. burnetii infected and replicated in BeWo trophoblasts within phagolysosomes. Using pangenomic microarrays, we found that C. burnetii induced a specific transcriptomic program. This program was associated with the modulation of inflammatory responses that were shared with inflammatory agonists, such as TNF, and more specific responses involving genes related to pregnancy development, including EGR-1 and NDGR1. In addition, C. burnetii stimulated gene networks organized around the IL-6 and IL-13 pathways, which both modulate STAT3. Taken together, these results revealed that trophoblasts represent a protective niche for C. burnetii. The activation program induced by C. burnetii in trophoblasts may allow bacterial replication but seems unable to interfere with the development of normal pregnancy. Such pathophysiologocal processes should require the activation of immune placental cells associated with trophoblasts

    Planck 2015 results. V. LFI calibration

    Get PDF
    We present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% in amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. We provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release

    A randomized, open-label, multicentre, phase 2/3 study to evaluate the safety and efficacy of lumiliximab in combination with fludarabine, cyclophosphamide and rituximab versus fludarabine, cyclophosphamide and rituximab alone in subjects with relapsed chronic lymphocytic leukaemia

    Get PDF

    Diagnostic Brain Biopsy

    No full text

    Modeling and Analysis of Meteorological Contour Matching with Remote Sensor Data for Navigation

    No full text
    This paper outlines the methods, results, and statistical analysis of a model we developed to demonstrate the feasibility of applying remote sensor meteorological data to navigation by using meteorological contour matching (METCOM). Terrain contour matching (TERCOM), a contemporary navigation system, possesses inherent performance flaws that may be resolved and improved by METCOM for subsonic and hypersonic missile or aircraft navigation. Remote sensor imagery data for this model was accessed from the Geostationary Operational Environmental Satellites-R Series operated by the National Oceanic and Atmospheric Administration by using Amazon Web Services through a script we developed in Python. Data processed for the model included imagery data and corresponding geospatial data from the legacy atmospheric profile products: legacy vertical temperature and legacy vertical moisture. Our analysis of the model included an error assessment to determine model accuracy, geostatistical analysis through semivariograms, meteorological signal of model data, and a combinatorial analysis to evaluate navigation performance. We conducted a model assessment which indicated an accuracy of 66.2% in the data used as a combined result of instrument error and interference of cloud formations. Results of the remaining analysis offered methods to evaluate METCOM performance and compare different meteorological data products. These results allowed us to statistically compare METCOM and TERCOM, yielding several indications of improved performance including an increase by a factor of at least 13.5 in data variability and contourability. The analysis we conducted served as a proof of concept to justify further research into the feasibility and application of METCOM

    Modeling and Analysis of Meteorological Contour Matching with Remote Sensor Data for Navigation

    No full text
    This paper outlines the methods, results, and statistical analysis of a model we developed to demonstrate the feasibility of applying remote sensor meteorological data to navigation by using meteorological contour matching (METCOM). Terrain contour matching (TERCOM), a contemporary navigation system, possesses inherent performance flaws that may be resolved and improved by METCOM for subsonic and hypersonic missile or aircraft navigation. Remote sensor imagery data for this model was accessed from the Geostationary Operational Environmental Satellites-R Series operated by the National Oceanic and Atmospheric Administration by using Amazon Web Services through a script we developed in Python. Data processed for the model included imagery data and corresponding geospatial data from the legacy atmospheric profile products: legacy vertical temperature and legacy vertical moisture. Our analysis of the model included an error assessment to determine model accuracy, geostatistical analysis through semivariograms, meteorological signal of model data, and a combinatorial analysis to evaluate navigation performance. We conducted a model assessment which indicated an accuracy of 66.2% in the data used as a combined result of instrument error and interference of cloud formations. Results of the remaining analysis offered methods to evaluate METCOM performance and compare different meteorological data products. These results allowed us to statistically compare METCOM and TERCOM, yielding several indications of improved performance including an increase by a factor of at least 13.5 in data variability and contourability. The analysis we conducted served as a proof of concept to justify further research into the feasibility and application of METCOM

    Influence of Corticosteroid Injections on Postoperative Infections in Carpal Tunnel Release.

    No full text
    PURPOSE: Corticosteroid injections (CSIs) are commonly used in carpal tunnel syndrome; however, recent literature has demonstrated risk of postoperative infection associated with preoperative CSIs in other orthopedic fields. The aim of this study was to assess the relationship of CSIs and postoperative infection following carpal tunnel release (CTR). METHODS: A single-center retrospective review was conducted from 2010 to 2019 to identify patients who underwent CTR with subsequent antibiotic prescription for chart-documented wound infection. A demographically-matched cohort of 100 patients was identified for comparison. Information on patient demographics, comorbidities, injection history, and presence of postoperative infection was collected. RESULTS: Thirty-nine patients (0.67% of all CTR patients) were identified with postoperative infections, 3 of which (0.05% of all CTR patients) were deep infections. In the infection cohort, 16 of 39 (41%) patients received an injection prior to surgery, whereas 16 of 100 (16%) patients in the control cohort received an injection. History of CSI was significantly more common in patients with postoperative infection, and patients in the infection cohort had a significantly shorter average time from injection to surgery by approximately 55 days. CONCLUSIONS: Corticosteroid injections in the preoperative period are associated with postoperative infection after CTR. Proximity of injection to time of surgery plays a role, although comorbidities, the corticosteroid dose, and frequency of injection require further study to determine risk contribution. TYPE OF STUDY/LEVEL OF EVIDENCE: Prognostic III
    • …
    corecore