
ECRYPT II
 
ECRYPT II
 

ICT-2007-216676

ECRYPT II

European Network of Excellence in Cryptology II

Network of Excellence

Information and Communication Technologies

D.SPA.7

ECRYPT2 Yearly Report on Algorithms and Keysizes
(2008-2009)

Due date of deliverable: 31. July 2009
Actual submission date: 27. July 2009

Start date of project: 1 August 2008 Duration: 4 years

Lead contractor: Katholieke Universiteit Leuven (KUL)

Revision 1.0

Project co-funded by the European Commission within the 7th Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission services)

RE Restricted to a group specified by the consortium (including the Commission services)

CO Confidential, only for members of the consortium (including the Commission services)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ECRYPT2 Yearly Report on Algorithms and

Keysizes (2008-2009)

Editor
Nigel Smart (BRIS)

Past and present contributors
Steve Babbage (VOD), Dario Catalano (Catania), Carlos Cid (RHUL),

Benne de Weger (TUE), Orr Dunkelman (KUL), Christian Gehrmann (ERICS),
Louis Granboulan (ENS), Tanja Lange (RUB), Arjen Lenstra (EPFL),
Chris Mitchell (RHUL), Mats Näslund (ERICS), Phong Nguyen (ENS),

Christof Paar (RUB), Kenny Paterson (RHUL), Jan Pelzl (RUB),
Thomas Pornin (Cryptolog), Bart Preneel (KUL), Christian Rechberger (IAIK),

Vincent Rijmen (IAIK), Matt Robshaw (FT), Andy Rupp (RUB),
Martin Schläffer (IAIK), Serge Vaudenay (EPFL), Michael Ward (MasterCard)

27. July 2009
Revision 1.0

The work described in this report has in part been supported by the Commission of the European Com-
munities through the ICT program under contract ICT-2007-216676. The information in this document is
provided as is, and no warranty is given or implied that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.

Contents

1 Introduction 1
1.1 Related Work . 2

2 Algorithm Selection Criteria 3

3 Preliminaries 5
3.1 Notation . 5

3.1.1 Primitive Information . 5
3.1.2 Algorithm Information . 6

4 Security Objectives and Attackers 7
4.1 The Security Process . 7
4.2 Security Levels . 8
4.3 Management Aspects . 9
4.4 Attack Resources and a Note on Moore’s Law 9
4.5 Implementation Notes . 10

I General Key Size Recommendations 11

5 Determining Symmetric Key Size 13
5.1 PC/Software Based Attacks . 14

5.1.1 Time-Memory-Data Trade-offs . 14
5.2 Attacks Using ASIC Designs . 15
5.3 Attacks Using FPGA Designs . 15

5.3.1 Existing Area-Time Efficient FPGA Implementations 16
5.3.2 Exhaustive Key Search Based on FPGA Hardware 16
5.3.3 Cost Estimates . 17
5.3.4 Research in the Field of FPGA-Related Attacks against DES 17

5.4 Conclusions . 18
5.4.1 Side Channel Attacks . 18

6 Determining Equivalent Asymmetric Key Size 21
6.1 Inter-system Equivalences . 21
6.2 Survey of Existing Guidelines . 22

6.2.1 Approach chosen by ECRYPT . 24
6.3 Impact of Special Purpose Hardware . 25

i

ii

6.4 Quantum Computing . 25

7 Recommended Key Sizes 27
7.1 Recommended Parameters: Non-confidentiality Objectives 28

7.1.1 Non-repudiation . 28
7.1.2 Message Authentication . 28
7.1.3 User Authentication . 29
7.1.4 Hash Functions . 29
7.1.5 Nonces . 29

7.2 Security Levels . 30
7.3 How to Deal with Very Long-term Security 31
7.4 A Final Note: Key Usage Principles . 32

II Symmetric Primitives 33

8 Block Ciphers 35
8.1 Overview . 35
8.2 64-bit Block Ciphers . 36

8.2.1 DES . 36
8.2.2 3DES . 36
8.2.3 Kasumi . 37
8.2.4 Blowfish . 37

8.3 128-bit Block Ciphers . 37
8.3.1 AES . 37

8.4 Modes of Operation . 38
8.4.1 Electronic Code Book Mode (ECB) 39
8.4.2 Cipher Block Chaining (CBC) . 39
8.4.3 Counter Mode (CTR) . 39
8.4.4 Hybrid Encryption . 39

9 Stream Ciphers 41
9.1 Overview . 41

9.1.1 A Note on Pseudo random Number Generation 42
9.1.2 eStream . 42

9.2 RC4 . 43
9.3 SNOW 2.0 . 43

10 Hash Functions 45
10.1 Overview . 45
10.2 Recent developments . 46
10.3 MD5 . 46
10.4 RIPEMD-128 . 47
10.5 RIPEMD-160 . 47
10.6 SHA-1 . 48
10.7 SHA-224, SHA-256 . 48
10.8 SHA-384, SHA-512 . 49

iii

10.9 Whirlpool . 49

11 Message Authentication Codes 51
11.1 Overview . 51
11.2 HMAC . 52
11.3 CBC-MAC-X9.19 . 52
11.4 CBC-MAC-EMAC . 53
11.5 CMAC . 53

III Asymmetric Primitives 55

12 Mathematical Background 57
12.1 Provable Security . 57
12.2 Choice of Primitive . 58

12.2.1 Other types of Primitives . 59
12.3 Non-cryptographic Attacks . 59

13 Public-key Encryption 61
13.1 Overview . 61

13.1.1 Security Notions . 61
13.1.2 Consideration: Hybrid Encryption . 62

13.2 RSA/Factoring Based . 62
13.2.1 RSA PKCS#1 v1.5 . 62
13.2.2 RSA-OAEP . 63

13.3 ElGamal/Discrete log based . 63

14 Signatures 65
14.1 Overview . 65

14.1.1 Security Notions . 65
14.2 RSA/Factoring Based . 66

14.2.1 RSA PKCS#1 v1.5 . 66
14.2.2 RSA-PSS . 66

14.3 ElGamal/Discrete Log Based . 67
14.3.1 DSA . 67
14.3.2 ECDSA . 68

15 Public Key Authentication and Identification 69
15.1 Overview . 69
15.2 GQ . 69

16 Key Encapsulation Mechanisms 71
16.1 Overview . 71
16.2 Factoring Based . 71

16.2.1 RSA-KEM . 71
16.3 DLOG Based . 72

16.3.1 ECIES-KEM . 72
16.3.2 PSEC-KEM . 72

iv

16.3.3 ACE-KEM . 73

17 Key Agreement and Key Distribution 75
17.1 Overview . 75

References 76

A Glossary 91

Abstract

This report contains the official delivery D.SPA.7 of the ECRYPT2 Network of Excellence
(NoE), funded within the Information Societies Technology (IST) Programme of the European
Commission’s Seventh Framework Programme (FP7).

The report provides a list of recommended cryptographic algorithms (e.g. block ciphers,
hash functions, signature schemes, etc) and recommended keysizes and other parameter set-
tings (where applicable) to reach specified security objectives. Due to possible advances in
cryptanalysis, the report is revised on a yearly basis for the duration of the project. The
report reflects state-of-the-art in public knowledge at the time of writing. It builds upon an
earlier report produced by the ECRYPT NoE from the Sixth Framework Programme (FP6).

The fact that a specific algorithm or variant thereof is not included in this report should
not be taken as indication that particular algorithm is insecure. Reasons for exclusion could
just as well be limited practical use (e.g. lack of standardization and/or implementation),
maturity, etc.

Chapter 1

Introduction

To protect (information) assets in an IT system, cryptographic protocols, algorithms, and
keys are used to reach certain security objectives deemed necessary for the protection of
said assets. What characterises today’s approach is to rely on standardised, open security
frameworks which are configured by “appropriate” algorithms, keys (and other parameters)
to reach the security level as defined by the security objectives. Well-known examples of
such frameworks are IKE, IPsec, TLS, S/MIME, etc. This is an important step forward from
earlier approaches based on proprietary algorithms and protocols, kept (to the largest extent
possible) unknown to the general public.

While it is recognised that the openness principle is the right way to go, it still does
not make the problem of implementing security a trivial task since skill is still needed to
determine which algorithms and keys are appropriate for the security objectives at hand.
First of all, a better-safe-than-sorry approach, e.g. encrypting each message four times with
different algorithms and huge key sizes, may not be the way to go, since it is likely to lead
to bad performance, complex management, and in some cases bad “dependencies” between
algorithms that could actually reduce security. As we will argue in more detail later, security
is a process, rather than a state. In particular, the openness is sometimes a two-edged sword,
leading to various attacks becoming known, and the average user may have difficulty in keeping
up with cryptanalytic advances, maintaining a secure configuration of his/her system over
time. Moreover, it is not always easy to understand the effects of combinations of different
configuration options, e.g. what is the overall security level when protecting a k-bit AES key
by an n-bit RSA key, using RSA padding option x?

The purpose of this report is to provide comprehensive, yet easy to use recommendations
for the use of cryptographic algorithms, keys (key sizes), and other parameters in protocols
such as those mentioned above. Specifically, the report contains the official delivery D.SPA.7
of the ECRYPT2 Network of Excellence, funded within the Information Societies Technol-
ogy (IST) Programme of the European Commission’s Seventh Framework Programme (FP7).
While trying to keep the recommendations simple, we also at the same time provide exten-
sive references for readers who are more technically oriented and would like to have more
background information.

Since the field of cryptology is constantly advancing, the recommendations in this report
are updated on an annual basis.

The report is organised as follows. We conclude this chapter by comparing this report’s
role relative to other similar reports. In Chapter 2 we give rationale for algorithm selection

1

2 ECRYPT II — European NoE in Cryptology II

criteria. Next, in Chapter 3 we introduce some notation and abbreviations used throughout
the report. Then, in Chapter 4, we discuss security objectives on a high level, approaches
to implement security relative to different type of attackers, and the importance of non-
cryptographic issues, that are outside the scope of this report. The rest of the report is
divided into three parts. Part I provides key size (and other parameter) recommendations.
Part II provides recommendations on the use of symmetric algorithms, and Part III finally
treats asymmetric algorithms.

1.1 Related Work

This is not in any way the first report containing recommendations for algorithms and key
sizes. We will later survey previous work in more detail, but for the moment, we give a quick
overview.

In [25], recommended key sizes for symmetric algorithms are given in relation to state-of-
the-art in 1996. More recently, [117, 161] gives recommended key lengths for different attack
scenarios and provides symmetric/asymmetric size-equivalence relations. A somewhat simpler
version of the analysis in [117], geared toward the specific application of finding asymmetric
sizes equivalent to (in practice fixed) symmetric sizes, can be found in [114, 115]. These
reports are quite generic and do not provide algorithm recommendations. In [208] a survey
and comparison of various key-size recommendations can be found.

The US NIST recommends algorithms and key-sizes for US federal use through the publi-
cation of FIPS (Federal Information Processing Standard) documents—an algorithm/key-size
appearing in a FIPS is thus considered “approved”. NIST also develops guidelines/recommendations
in the form of Special Publications (SP).

The NESSIE consortium, [155], presents a portfolio of recommended algorithms, and in
some cases, also key-size recommendations. Some of the algorithms in [155] have since been
included in standards, some of which are covered here.

RSA Laboratories in [171] provide a cost-based analysis of equivalences between symmetric
and asymmetric key sizes.

Finally, in [57], both algorithm and key-size recommendations can be found, but only for
signature schemes.

In comparison to the above works, the current report aims at a wider scope, covering most
types of algorithm primitives, in combination with recommendations for appropriate key sizes
and the setting of other parameters. A second goal is to provide some easy to understand
discussion on (security) properties of various primitives without using too technical language,
yet striving to be correct. Indeed, experts in the area may find the text too informal in places
(or even naive), so a third goal has been to provide numerous references to more technical
treatments. As mentioned, the (at least) annual updates of this report aim to provide up-to-
date information.

It is also important to distinguish between the questions what is the smallest secure key
size?, and, what is the smallest key size that is not completely insecure? That is, rather than
trying to find a magic “threshold” that separates security from insecurity, we have tried to be
realistic and discuss more in terms of security levels, and elaborate considerations that could
make a lower security level, forced onto us by environmental considerations in the form of
bandwidth or processing power, acceptable. Also, the duration of the required protection is
important, as is the value of the protected information asset.

Chapter 2

Algorithm Selection Criteria

The report provides a list of cryptographic algorithms in the following categories.

• Symmetric primitives:

– block ciphers (and modes of operation)

– stream ciphers

– hash functions

– message authentication codes.

• Asymmetric primitives:

– public key encryption

– signature schemes

– public key authentication/identification schemes

– key encapsulation mechanisms

– key agreement and key distribution.

Why are some algorithms included, yet other (sometimes well-known) algorithms excluded?
The basis for selection has been security and wide-spread use. As a principle, only standard-
ised, mature, wide-spread and secure algorithms are included. However, in some cases, com-
monly used, but security-wise non-optimal algorithms are also covered, pointing out caveats in
using them. There are also a few cases where draft standards, anticipated to have substantial
near-future impact have been included.

Therefore, the fact that a specific algorithm or variant thereof is not included in this
report cannot be taken as indication that that particular algorithm is insecure. Reasons for
exclusion may as mentioned also be limited practical use (e.g. lack of standardization and/or
deployment), etc. Conversely, inclusion does not guarantee that a particular algorithm is
secure, only that it is secure as known in current state of the art. Current methods may fail,
sometimes spectacularly, see e.g. [52].

Currently, the report does not cover pseudo-random functions, pseudo-random generators,
entity authentication using symmetric techniques or more compound cryptographic protocols.
In some cases “variants” of a basic algorithm, e.g. different RSA padding mechanisms, are
covered due to their wide-spread use and/or expected advantages.

3

4 ECRYPT II — European NoE in Cryptology II

Chapter 3

Preliminaries

3.1 Notation

Throughout the report, the following notation is used.

logb x logarithm of x to base b
log x log2 x
lnx loge x, e = 2.7182 . . .
|x| the size (in bits) of x, i.e. dlog xe
Zm the ring of integers modulo m
Z∗

m the multiplicative group ⊂ Zm

Fs the finite field of s = pn elements

Please refer to Appendix A for a glossary of abbreviations and acronyms.
We shall for each algorithm make references to various international standards making

use of said algorithm. Though they are not standards in the formal meaning, the probably
largest “consumer” of cryptographic standards are the IETF RFC specification suites. Since
we shall often refer to these, we here wish to clarify use of some acronyms once and for all.

IPsec: IP security protocol, RFC 2401, 2402, 2406.

IKE: Internet Key Exchange, RFC 2409.

TLS: Transport Layer Security (TLS), RFC 2246.

S/MIME: Secure MIME, RFC 3396, 3850, 3851.

OpenPGP: RFC 2440, 3156.

These are available from http://www.ietf.org/rfc.html.

3.1.1 Primitive Information

For each primitive type (block cipher, hash function, signature scheme, etc) we only give
informal, intuitive definitions of what it means for the respective primitive to be “secure”.
A number of different security notions have been proposed and used in the literature, and
it is beyond the scope of this report to investigate them more deeply, compare them, etc.
When important for practical use, we shall highlight in slightly more detail what security

5

6 ECRYPT II — European NoE in Cryptology II

notion we refer to. For the interested reader, we generally refer to the excellent survey given
in each chapter of the NESSIE security report, [156]. Although our definitions are only
informal, we shall not make use of any non-standard terminology, so [156] or any text book
on cryptography, e.g. [137], should be able to provide more background, if needed.

3.1.2 Algorithm Information

Each of the included algorithms in Chapter 8 through Chapter 17, are represented in the form
of an algorithm record, having the following shape and meaning:

Definition: Reference to stable algorithm specification.

Parameters: Parameters characteristic of the algorithm such as supported key and block
sizes, as well as any data required to unambiguously specify algorithm operation, e.g.
group used to carry out arithmetic etc.

Security: Statement about the security according to state-of-the-art. In particular, for sym-
metric algorithms, the effective key size, or, “as claimed”, meaning that no non-trivial
attack is known. For asymmetric algorithms, where applicable, reference to proof of
security and possible assumptions needed for the proof to hold.

Deployment: Reference to standards and/or products that use the algorithm.

Implementation: Pointers to “reference” implementation or test-vectors, if such are known
to exist.

Public analysis: Reference to public analysis carried out, e.g. research papers and/or efforts
such as NESSIE, Cryptrec, etc, where applicable.

Known weakness: Reference and short explanation of known weaknesses, should such be
known.

Comments: Any additional information, e.g. caveats, pros/cons in using the algorithm, etc.

Note that the algorithm records are not necessarily exhaustive.

Chapter 4

Security Objectives and Attackers

We introduce security in IT systems to meet certain desired security objectives. Examples of
well-known security objectives closely coupled to cryptography are confidentiality, integrity,
and non-repudiation. The security level determines quantitatively to what extent these ob-
jectives need to be met, e.g. “how strong” confidentiality do we need, and is based on a
threat and risk assessment of the IT system, which somewhat simplified asks questions of the
following form:

1. How long into the future must security level persist? What is the “lifetime” and/or
“value” (direct/indirect) of the protected asset?

2. Success of a brute-force key search is inevitable, but are there even better attacks?

3. What is the attack model? (Who is the attacker? What resources does he/she have?)

4. How will these resources develop during the lifetime of the protected data?

5. What cryptanalytic progress will occur during the lifetime of the protected data?

The approach taken in this report (and all other existing similar reports) is to take present
state-of-the-art for the second point, make assumptions about the three last issues, and from
that extrapolate key-sizes to match different security levels as defined by the first point. In
the following we discuss in some more detail what this means.

Before doing so, a few words about defining the security level, i.e. (1) above. This is a
business issue, figuring out what the overall financial impact of a security breach could be.
Here, the more indirect value of “reputation” is typically a bigger consideration than direct
monetary impact. This is then combined with the cost of various types (levels) of protections,
and finally one decides what security level is desirable and till when.

4.1 The Security Process

It is important to realize that security is usually more of a process than a state. Security
means to use and manage mechanisms to

Protect: make attacks expensive or unsuccessful.

Detect: make (attempted) attacks likely to be detected.

7

8 ECRYPT II — European NoE in Cryptology II

Respond: provide means to respond to successful attacks.

Recover: restore the system to a secure state after an attack.

Sometimes one also includes deterrence, which in a cryptographic sense is quite similar to
protection (a large key size may deter attackers by the implied effort needed to break the sys-
tem) but it is also covers non-technical issues such as legal frameworks to prosecute attackers.
Such non-technical issues will not be discussed here.

�
�

@
@

�
�

@
@deter

�
�

@
@

�
�

@
@protect

�
�

@
@

�
�

@
@detect

�
�

@
@

�
�

@
@respond

�
�

@
@

�
�

@
@recover

Figure 4.1: The security process, [29].

One can identify two main approaches in implementing this security process. The fail-safe
approach puts a lot of resources on deter/protect to make security failures unlikely, whereas
what we (with slight abuse of English language) shall call the safe-fail approach spends effort
more on detect/protect/recover, so that failures cannot be excluded, but can on the other
hand be recovered from. As we will see, different security objectives are sometimes more
suited for one of these two approaches.

Part of the goal of this report is to provide some guidance on how to approach important
parts of the security process in order to maintain a secure system. Still, many important
aspects of the process are also out of scope, e.g. management processes surrounding crypto-
graphic keys, such as revoking keys and replacing keys before they are “worn out” etc.

4.2 Security Levels

At the end of the day, what one usually cares about is how long it will take an attacker to
“break” the security and what resources he needs in order to have a reasonable chance of
succeeding. This cost (in time and/or money) of breaking the system must be higher than
the value (in a similar measure) of the protected asset. For instance, if a 1Million dollar
machine is needed to obtain secrets of value 1 dollar, one could hope the attacker is deterred
by this (unless he/she simultaneously can get one million such secrets of course), and similarly,
if information is only “sensitive” for a few hours, a break of the system requiring a week’s
attack effort might be acceptable.

It is however important to note that the needed security level could depend on the security
objective. Referring to the security process above, if confidentiality is compromised, there is
usually not much one can do to recover from the compromise. However, if we fear loss of
non-repudiation to be close at hand, various combinations of recovery mechanisms may be
available, e.g. re-signing with new algorithms and/or longer keys. Therefore, confidentiality
is usually by nature a security objective that needs to be handled with the above defined fail-
safe approach, whereas e.g. non-repudiation can sometimes also be handled by the safe-fail
approach.

D.SPA.7 — ECRYPT2 Yearly Report on Algorithms and Keysizes (2008-2009) 9

4.3 Management Aspects

When the security requirements are very high, it is usually the case that non-cryptographic
issues become more important. For instance, to maintain an overall system security level of
more than, say 128 bit symmetric keys, management and social aspects tend to weigh in more
than mere key size. We do not claim that it is impossible or irrelevant to imagine very high
security levels, but we want to stress that such non-cryptographic issues are then likely to
enter the scene as the weakest link of the chain. This report therefore simply assumes that
management issues can be handled to match the desired security. It is out of the scope of
this report to convert such aspects into key sizes, attempting to answer a question like: “We
use k-bit keys, managed by a process like this, what is the overall effective key size?”

4.4 Attack Resources and a Note on Moore’s Law

What attackers are realistic to take into account? In 1996, [25] used the following classifica-
tion.

“Hacker”: using a $0 budget and standard PC(s), or possibly a few $100 spent on FPGA
hardware.

Small organization: with a $10k budget and FPGA(s).

Medium organization: $300k budget and FPGA and/or ASIC.

Large organization: a $10M budget and FPGA/ASIC.

Intelligence agency: $300M budget and ASIC.

Such a classification is probably largely still valid today.
When security is to be maintained for longer periods than a few months, we must also take

into consideration that the attacker may upgrade his/her resources according to developments
in state-of-the-art. The sometimes debated, but commonly accepted way to handle this point
is to assume Moore’s law. This law, today usually (mis)quoted as

bits per square inch in year t ∼ 2(t−1962)/1.5,

has been a reasonably good approximation for the developments in “computing power per
dollar” over the last few decades. For example, [25], mentions implementation of a DES
cracker on a certain family of FPGAs. The gate density of this family of FPGAs have
increased from tens of thousands of gates (1995) to hundreds of thousands (2002).

Moore’s formula is considered very inaccurate at describing CPU clock-speed, but for the
probably more relevant measure of PC performance in terms of MIPS capacity, it seems to
apply albeit with a slightly larger constant than “1.5”, see [192] for a discussion.

Industry experts seem to agree that it is likely that Moore’s law will continue to apply for
at least a decade or more. Therefore we have chosen to adopt this assumption here (as is also
done in e.g. [117] and previous key-size studies). However, completely new computational
models and forms of hardware may also need to be considered, more on this later.

10 ECRYPT II — European NoE in Cryptology II

4.5 Implementation Notes

Cryptographic algorithms can be more or less sensitive to attacks that primarily exploit
“physical” rather than cryptographic weaknesses. That is, attacks could be relying on imple-
mentation mistakes or exploitable environmental properties. For instance, some attacks are
known based on e.g. a biased key-space, timing analysis, fault analysis, power consumption
analysis, etc. Misuse and management errors can of course also lead to compromise. The
recommendations in this report are given under the assumption that the algorithm is prop-
erly implemented, used, and managed, and furthermore run in an environment where it is not
subject to the above mentioned side-channel attacks. Occasionally, however, we may point
out specific caveats of this nature.

Part I

General Key Size Recommendations

11

Chapter 5

Determining Symmetric Key Size

For symmetric schemes, key size requirement is in principle quite straightforward. If the
cryptosystem as such can be assumed to be secure for the lifetime of protected data, the only
attack means is usually a brute force key search/guessing attack1, whose time/success ratio
only depends on the maximum amount of computing power (number of computers, special
purpose hardware, etc), P , the foreseen attacker(s) have at their disposal. Thus, we select an
n-bit key so that ∼ 2n/P is somewhat larger than the life-time of the protected data. If the
secret must prevail for more than, say a year, we should as mentioned also take Moore’s law
into account. Let us survey some earlier recommendations and some (publicly known) attack
efforts, to benchmark how well extrapolation of old recommendations seem to hold.

Our basis will be the report [25], which in 1996 proposed 75-bit symmetric keys to protect
“against the most serious threats”, and 90-bits for a 20-year protection. The proposal is based
on Table 5.1, which seems to be rationalized by defining minimum security as maintaining
confidentiality a few days, up to a year. (The last column shows the assumed key-recovery
time for the different attackers in the model used.) There are some indications that this is

Table 5.1: Minimum symmetric key-size in bits for various attackers (1996).
Minimum Recovery

Attacker Budget Hardware keysize time
“Hacker” 0 PC(s) 45 222 days

$400 FPGA 50 213 days
Small organization $10k FPGA 55 278 days
Medium org. $300k FPGA/ASIC 60 256 days
Large org. $10M FPGA/ASIC 70 68 days
Intelligence agency $300M ASIC 75 73 days

still a reasonably accurate approach. We have some recent data-points of attack efforts, as
well as some proposed hardware (FPGA and ASIC) designs to compare to.

1See considerations of trade-off attacks, Section 5.1.1.

13

14

5.1 PC/Software Based Attacks

In late 1999, a small team which for these purposes could be considered (skilled) “hackers”
found a 48-bit DES key in about 3 weeks using a relatively small number of general purpose
computers, distributing key-search as part of a screen-saver application, [5]. Applying Moore’s
law to Table 5.1, it predicts that 48-bit keys in 1999 would resist hackers for about a year.
Thus, the attack was about 17 times faster than expected. On the other hand it is doubtful
if [25] included such an attack in the “hacker” category, and we return to this later.

In 2002, [51] completed the RC5 64-bit challenge after nearly 5 years and some 300,000
individual general-purpose computers participating. (The same source completed the 56-
bit challenge in 250 days in 1997 using 3,000 machines.) A question is how to interpret
such results, since they are done by “hackers” with relatively small resources, utilizing the
connectivity offered by today’s (and tomorrow’s) Internet. This is an important issue, since
if one indeed considers this a hacker attack, the hacker keysizes need a quite big increase
relative to predictions by the table (at least 5-10 bits). One could on one hand argue that
such resources will only be summoned on “challenge” types of attacks. On the other hand,
various forms of Malware (e.g. worms2) are more and more frequent, and the average user
could, unbeknownst to him/her, be part of a real attack. Indeed, [184] reports that this is
one of the most popular applications of worms.

In [53] it is estimated that the total computational power of the Internet is about 285

operations per year. While it would unrealistic that the whole Internet spends one year to
attack a single 85-bit key, one can consider more reasonable examples.

Suppose, for instance, that a “worm” with key-search motive is spread to a fraction h of
all hosts. Suppose also that the worm, to avoid detection, runs in “stealth” mode, consuming
a c-fraction of the CPU power of each host. (We assume for simplicity that all hosts have
equally powerful CPUs.) Finally, assume it takes a t fraction of a year before the worm is
disabled by anti-virus means. Even for quite realistic values of h, c, t (say around 0.1–1% of
all hosts, below 1% CPU power and roughly a day before anti-virus has effect), we see that
keys somewhere in the range 56–64 bits could be retrieved.

These case-studies leads us to believe that we need to introduce a new type of hacker using
distributed attacks, perhaps stealing CPU time from victims at least on a medium scale, and
we propose to add an additional 8 bits for this category. We shall not explicitly consider the
very large scale challenge type efforts.

5.1.1 Time-Memory-Data Trade-offs

We have so far assumed brute force key-search to be the only possible attack. This is not
necessarily true if, for instance, the following conditions hold

• The adversary can use an “off-line” pre-computation step, generating large amounts of
data (e.g. encrypting messages under random keys).

• The adversary has large storage capacity.

• The adversary will be able to observe a large number of encrypted messages under
different keys, and it suffices for him to break one of these keys.

2A piece of computer program that automatically spreads to hosts on a network, infecting them with
“malware”.

15

Attacks in this model are based on the adversary pre-generating data, storing it in a database
and finding “lucky” collisions between observed data and data stored in said database. “Luck”
is here typically dependent on the size of the key, the amount of pre-computed data, and
the number of observed messages, and generalizations of the well-known birthday paradox.
Table 5.2 from [53] summarizes some generic, algorithm independent attack complexities that
can be achieved by such time-memory-data (TMD) trade-offs.

Table 5.2: Generic TMD attack trade-off points.
Key-size No. of keys (Data) Time Memory Pre-processing

n 2k/4 2k/2 2k/2 23k/4

n 2k/3 22k/3 2k/3 22k/3

n 2k/2 2k/2 2k/2 2k/2

For example, if the attacker has 243 memory and 285 pre-processing computations, he can,
using 284 time, obtain one 128-bit key among a set of 243, and so on.

5.2 Attacks Using ASIC Designs

EFF’s DES-craker (a.k.a. “Deep Crack”), [63], designed and built at a cost of about US$200k,
was reported to recover 56-bit DES keys in just over 22 hours in 1998. Table 5.1 predicts
that in 1998, keys of roughly 61 bits would resist such attackers for 2 days. Extrapolating,
Deep Crack would have retrieved such keys in about 1 month. Table 5.1 is thus slightly
conservative, but close.

In [31] (1999), a $280M machine is sketched that would occupy an area one fifth of the
Pentagon and would retrieve 64-bit RC6 keys in a few minutes. It is noted that this figure
matches quite well an extrapolation of [25] numbers.

More recently, in [49] (2006) an ASIC design targeted at hardware-focused stream ciphers
is suggested. The idea is that by definition, such stream ciphers are easy to accelerate with
hardware (and hardware replication), speeding up key-search. Also, some intrinsic stream
cipher properties can be exploited, e.g. one would expect that half of the keys can be discarded
already after only one bit of output has been generated. This paper suggests e.g. that 80-
bit (stream cipher) keys could in 2010 be found in one month using $33M of hardware.
(Alternatively, with a $8M budget today the key could be retrieved in a year.) This agrees
reasonably well with the 1996 predictions of [25], which suggests that in 2010, 80 bit keys
could be found at third this cost, but taking twice the time, i.e. a similar cost/time trade-off.

5.3 Attacks Using FPGA Designs

In the following, we will estimate the costs for an exhaustive key search attack on the sym-
metric ciphers DES and AES based on the use of FPGA devices. As basis for our estimates,
we use area-time optimized FPGA implementations of DES and AES presented in the next
section. As main result of our assessment we conclude that a DES key search using FPGAs is
very feasible at low costs and moderate engineering expertise. In the case of AES, however,
a brute force attack seems completely out of reach for several decades to come.

16

The reason why we focus in more detail on FPGAs as opposed to ASICs (Application
Specific Integrated Circuits) is that that FPGAs require (1) considerably less engineering
expertise and (2) the initial costs for an FPGA development environment are very moderate
(perhaps a few 1000s of dollars vs. 100,000s of dollars in the ASIC case, see, e.g. [56]). We
would like to stress, though, that ASICs are more cost efficient than FPGAs in high volume
applications. Thus, in the case of key search machines for AES, one could possibly achieve
lower costs with dedicated ASICs. However, the expected cost/performance benefit should
be not more than 1–2 orders of magnitude, so that even an ASIC-based key search attack
seems completely out of reach.

5.3.1 Existing Area-Time Efficient FPGA Implementations

A comparison of different AES implementations on FPGAs can be found in [76]. Table 5.3
summarizes relevant information and the corresponding references.

Table 5.3: Comparison of some published FPGA AES implementations (128 bit key)
Block Through- Mbit/s

Design Device Slices RAM put (Gbit/s) / Slice
Gaj et al. [60] XCV1000-6 12600 80 12.1 0.96

McLoone et al. [132] XCV812E-8 2222 100 6.95 3.1
Standaert et al. [188] XCV3200E-8 2784 100 11.77 4.2
Saggese et al. [173] XVE2000-7 5810 100 20.3 3.4
Hodjat et al. [76] XC2VP20-7 5177 84 21.54 4.0

Apparently, [188] and [76] yield the best performance of AES on an FPGA regarding
the area-time trade off. A throughput of 11.77 Gbit/s and 21.54 Gbit/s could be reached,
respectively. Another contribution shows efficient FPGA accelerators both for DES and AES
([105]). For a throughput of 744 MByte/s, DES requires 3,250 CLBs (Configurable Logic
Blocks) on a single FPGA. For a throughput of 2,500 MByte/s, AES requires 5,350 CLBs
and 80 Block RAMs.

Besides results from the research community, there are also commercial cores for symmetric
ciphers available, e.g., from Helion. The “Helion AES Core” runs on a low-cost FPGA (Xilinx
Spartan-3) and is available in four different gradings: a “Tiny Core” with a throughput of 18
Mbit/s, a “Standard Core” with 229 Mbit/s, a “Fast Core “ with approx. 1 Gbit/s, and a
“Pipelined Core” with more than 10 Gbit/s ([75]).

For DES, Helion offers a core running on a Xilinx FPGA (Virtex-II) with a data rate
greater than 640Mbit/s for single DES and more than 230Mbit/s for triple DES ([75]).

5.3.2 Exhaustive Key Search Based on FPGA Hardware

For an exhaustive key search, all possible keys are tested with the FPGA hardware imple-
mentations of DES or AES. Assuming the possession of a pair clear-cipher text, we only need
to encrypt a single block with each key candidate. All computations are based on the results
of [188, 105], where non-pipelined implementations are used (pipelining cannot be used since
we only encrypt/ decrypt a single block with one specific key).

17

For AES, we can test approximately 9.2 · 107 keys per second. With the DES hardware,
1.2 · 107 keys per second can be checked. Hence, with a single encryption or decryption
unit, an exhaustive key-search would take on average 3.1 · 109s (≈ 98 years) and 1.9 · 1030s
(≈ 5.9 · 1022 years) for DES and AES (128 bit key), respectively. These numbers are already
a first indication of the feasibility of an exhaustive key search for DES vs. AES.

5.3.3 Cost Estimates

In order to achieve low over-all costs, we assume high volume prices for FPGAs. For instance,
a typical low-cost FPGA such as the Xilinx Spartan-3 FPGA (90nm process) currently costs
about $6.50 ([209]) and contains approximately 8,000 configurable logic blocks and, hence can
fit two AES or two DES units including overhead. Since the FPGAs listed in Section 5.3.1
differ from the Xilinx Spartan-3 platform, the following cost calculations are not exact but
should give a valid estimate.

Assuming an exhaustive key search within one month, many FPGAs have to be assembled
in a cluster, each performing key searches in a part of the key space. We assume an overhead
of 100% for printed circuit boards, power supplies etc. Costs for development, electrical
energy and possibly cooling are not included in this estimate. Under these conditions, DES
can be cracked in one month with 75 FPGAs (containing two DES engines each), at a cost
of $13 (FPGA plus 100% overhead), yielding a total cost of approximately $1,000.

Note that these numbers are based on an average key search, i.e., half the key space is
searched. The cost-performance ratio stays constant in this estimation. That means, for
instance, that a ten times faster key search (i.e., 3 days) would require a key search machine
which is ten times more expensive (i.e., $10,000). Again, we would like to stress that these
are estimates rather than exact numbers.

For AES (128 bit), a machine performing an average key search in one month would cost
$4.6 · 1024. Even if we take Moore’s Law into account (i.e., decrease of IC costs by a factor
of two every 1.5 years at constant performance), such a machine would still cost $4.2 · 1014

in the year 2055. It is, however, somewhat doubtful if Moore’s Law will be valid for such a
time span, as semiconductor-based computers will run in various physical limitations before
that. However, this is also a cost related issue: even if technology gets stuck, manufacturing
capacities may still increase and costs decrease, thus keeping Moore on track, possibly.

5.3.4 Research in the Field of FPGA-Related Attacks against DES

A paper by Hamer et al. ([69]) describes a DES-cracking hardware on a field-programmable
system called the “Transmogrifier 2a”. A fully implemented system would be able to search
the entire key space in 1040 days at a rate of 800 million keys/second. A single unit consists
of two Altera 10K100 FPGAs, each connected to up to 4MB memory. The whole system
consists of 16 such units and was expected to cost approximately $60,000.

Besides a simple exhaustive key search machine, [111] presents a hardware FPGA imple-
mentation of linear cryptanalysis of DES. The authors implemented a modified attack from
Matsui’s original attack. The resulting attack is less efficient than Matsui’s attack, but fits
in the hardware and breaks a DES key in 12-15 hours on one single FPGA.

A quite accurate estimate of an attack on DES by an exhaustive key search is given
in [187]. Assuming the use of low-cost devices such as the 3S1000 Spartan-3 from Xilinx ($

18

12 p.p.) and recent results from efficient DES implementations, a device for cracking DES
within 3 days would cost approximately $ 12,000.

In [113] (2006) a e 9,000 FPGA design, “COPACOBANA”, is made that retrieves 56-bit
DES keys in about nine days, average. This is slightly (but not by any order of magnitude)
slower than extrapolated from the above DES machine. Subsequently, [50] proposes a similar
design targeted at stream cipher key search.

5.4 Conclusions

Motivated by the analysis above, our proposal is to (according to Moore’s Law) add about 8
bits to all the figures in Table 5.1, and to add the distributed attack type as above with some
additional safety margin. ECRYPT’s symmetric key-size table is found in Chapter 7.

Let us do a quick “sanity check” by comparing the above conclusion to the work in [117].
That study is based on a key size requirement defined in terms of Moore’s Law and that
56-bit (DES) keys were “sufficiently infeasible” in terms of a 1982 $50M machine retrieving
56-bit keys in 2 days. Now, for 2008 [117] recommends symmetric keys of about 75 bits.
A Moore-extrapolation (to add about 8 bits to the 1996 [25] values) here leads to a (2008)
$300M machine finding 83-bit keys in 73 days. It is tempting to turn the ($50M, 75-bit, 2-
day) machine suggested by [117] for 2008 into a $300M machine that recovers (almost) 78-bit
keys in the same time, or, 83-bit keys in about 64 days. This thus compares well with our
estimate.

For FPGAs, Table 5.1 predicts that in 2008, 58-bit keys will give about 200 days of
protection against a $400 FPGA design. Above, we estimated that $12,000 would give us a
device that retrieves such key-sizes in 3 days. Scaling, $400 spent on FPGA would give us
the 58-bit keys if we are willing to wait 30 times longer, i.e. 90 days.

5.4.1 Side Channel Attacks

While previous considerations dealt with the algorithmic strength of the cryptographic prim-
itives, a different research field analyzes the strength of the implementation itself. This
approach is motivated by the fact that even strong primitives can be implemented in a way
that is easily vulnerable to an attacker. Such side channel attacks actually find the key using
information which leaks from the execution of the encryption, whether it is different timings
for different keys/operations, different power consumption curves, or even different memory
accesses.

Timing attacks [109] are attacks which are based on observing the time required to perform
the secret operation. For example, consider an RSA decryption done using an unprotected
implementation of the square-then-multiply algorithm. In such a case, the time required for a
step of the decryption process when the bit of the secret exponent is 1 is about twice as much
as the case when this bit is 0. By observing the time required for the decryption process, it
is possible to obtain information about the hamming weight of the secret exponent. Also, by
using specially crafted ciphertexts and statistical methods, it is possible to retrieve the entire
key.

Power analysis [110] follows similar concepts of observing internal information on the
execution of the algorithm, but uses the power consumed by the implementation. For example,
the power consumption when flipping a memory bit from 0 to 1 (or from 1 to 0) is significantly
higher from the power for maintaining a 0 bit (using standard logic gates). This attack is

19

especially useful against devices which use external source of power (e.g., smart cards and
RFID tags), where the attacker can easily monitor the amount of power consumed by the
device. A great deal of research has been put into offering protection against this type of
attack, but usually new protection methods do not withstand the new generation of these
attacks.

Cache attacks [163] are a special case of timing attacks. While regular timing attacks are
usually very successful against asymmetric primitives, they usually fail against symmetric key
algorithms, as their execution time is very close to a fixed time (and the execution time is not
correlated enough with the actual values that are encrypted). The cache attacks overcome
this issue by measuring the state of the cache (through timing) before and after encryption
steps. By observing which entries have been accessed, a very fine tuned information on the
encryption process can be detected. Recent works on this topic have suggested the use of
the TLB (Translation lookaside buffer) of modern CPUs. It is worth mentioning that recent
results on AES in the HyperThreading computational model [162] has led Intel to include
AES commands in future CPUs.

Various countermeasures have been suggested to overcome these attacks. Some of these
ideas are generic approaches (e.g., maintaining a shadow value which is encrypted in a man-
ner which cancels the difference in power consumption) and some of them are algorithmic
specific. While the exact analysis of the primitive against these attacks is usually hard to
anticipate (as the attack is on a specific implementation, and do not interact directly with
the algorithm), there are some basic observation which are true: The use of table lookups
increase the susceptibility of the cipher to cache attacks (as the attacker can try and observe
which of the table entries were accessed). The simpler the operation is, it seems easier to
protect it (for example, ensuring that the power usage of an XOR operation is constant is
much easier than ensuring that the power usage of a 32-bit multiplication is constant).

Thus, when coming to pick the right cryptographic solution it is important to define the
mode of use, and the access that the attacker might have to the implementation. The stronger
the attacks the attacker may mount as side channel attacks, the higher the cost of protecting
the implementation becomes.

20

Chapter 6

Determining Equivalent
Asymmetric Key Size

For asymmetric cryptography, things are more complicated since

• unnecessarily large keys affect performance

• increasingly effective attacks (all much better than brute force) have been discovered
over the last 30 years

• we have recently seen suggestions for special purpose cryptanalytic hardware that are
more than being “naive” search-machines.

Symmetric and asymmetric schemes are often used in conjunction, e.g. an asymmetric key
is used to guard a symmetric key. Thus, we must be aware of the somewhat worn-out, yet
universally valid “security is as good as the weakest link” principle, and we need a way to find
an asymmetric key-size that matches a pre-specified symmetric key-size. At the same time,
we want to avoid an overly large public key. A number of comparative studies have been
made by skilled people, and rather than doing it again, we would like to see what conclusions
can be drawn from these sources.

6.1 Inter-system Equivalences

In the following, RSA refers generically to a public key scheme, which is here assumed equiv-
alent in hardness to the integer factoring problem. We similarly use DLOG and EC to
refer generically to schemes based on discrete logarithms and (secure) elliptic curve groups,
respectively, both over finite fields of prime order.

For EC, state-of-the-art suggests that EC in a subgroup of m-bit size is equivalent to m/2
bits symmetric key. In fact, considering that the elementary operations of these attacks are
point additions on an elliptic curves, which should be compared to trying a symmetric key, it
would be possible to reduce EC key size by roughly 8-12 bits for practical ranges of key-sizes.
This is done in [117], but not in e.g. [149, 114]. We propose to follow the simple half-the-
size principle as a general recommendation. This will also, as noted in [117], provide some
protection against unforeseen developments in cryptanalysis of elliptic curves, without serious
impact on performance. Curves over binary fields are often recommended (see e.g. [207]) to
use slightly larger keys to mitigate certain hardware attacks. Also, the generic attacks are

21

22

in the binary case sometimes a bit more efficient. For instance, so-called Koblitz curves over
binary fields of size 2n can be attacked roughly a factor

√
2n faster. Curves over binary fields

generally also require other forms of special attention when selecting parameters.
According to state-of-the-art, the difficulty of solving DLOG in prime order fields of

size 2n is, up to constants, asymptotically equivalent to that of breaking n-bit RSA. In
practice though, DLOG is noticeably more difficult. Moreover, DLOG is in most standardized
algorithms performed in a smaller subgroup, and then the size of this subgroup that matters
too, in which case the symmetric key equivalent is theoretically half of the bit-size of said
subgroup, again according to the same generic attacks applicable also in the EC case. This
would imply DLOG sub-groups of the same size as a corresponding EC group. Note though
that performing exponentiations over a finite field is noticeably more expensive than on an
elliptic curve of equivalent security. (The difference can be on the order 10-40 times, depending
on security level.) Implementations which are concerned with performance could therefore,
if required, reduce subgroup size by a few bits without lowering the security compared to
the EC case (e.g. [117, 161] uses roughly 10-bits size reduction of the subgroups for practical
key-sizes). Nevertheless, our general recommendation shall for simplicity be according to
the same half-the-size principle, and to assign n-bit fields the same security as n-bit RSA, a
slightly conservative recommendation for DLOG based schemes.

With this in mind, the main issue is to determine RSA vs. symmetric key equivalence.
We next survey some existing publications in this area.

6.2 Survey of Existing Guidelines

Assuming that the 56-bit Data Encryption Standard (DES) was considered “secure” by any
reasonable meaning until 1982, [117] suggest that 80-bit symmetric keys are secure until
2012 and are computationally equivalent to 1120-1464 bit RSA/DLOG keys (depending cost
model; HW/general purpose computer), 140 bit DLOG subgroups and 149-165 bit EC groups
(depending on likelihood of cryptanalytic progress). The analysis is quite methodical, and
can be used to derive key-sizes relative to varying assumptions and scenarios.

Table 6.1: Lenstra-Verheul recommendations (assuming “average” cost model/cryptanalytic
progress).

Equivalent symmetric key size 56 64 80 96
Elliptic curve key size 95 116 160 200
Modulus length (pq)/dlog field 380 580 1300 2500
Dlog subgroup 102 114 141 171

Taking cost (of memory) more into consideration, [183] argues that in the year 2000, 1024-
bit RSA keys corresponded to 96-bit symmetric keys. As noted in [180], this leads to quite
different extrapolations of the lifetime of RSA keys between [117] and [183], the second giving
1024-bit RSA keys some 30 years extra lifetime. On the other hand, worst-case scenarios in
[117] suggests that 1024-bit RSA keys could already have been factored today, but there is
no public record that any key even close in size has been factored.

In the US, NIST has issued an equivalence table, [149], stating that 80-bit symmetric keys
correspond to 1024-bit RSA/DLOG keys and 160-bit DLOG subgroups and EC groups. For

23

the 128-bit level, 3072 and 256-bit keys, respectively, are recommended. The 80/1024/160 bit
level is considered sufficient until 2010, beyond that 112/2048/224 bits are promoted. RSA

Table 6.2: NIST recommendations.
Equivalent symmetric key size 80 112 128 192 256
Elliptic curve key size 160 224 256 384 512
Modulus length (pq)/dlog field 1024 2048 3072 7680 15360
Dlog subgroup 160 224 256 384 512

Lab’s and Certicom’s recommendations are in line with this. For all practical purposes, this
is also in reasonable agreement with [117] but does not differentiate the cost of operations in
EC and DLOG subgroups, compared to symmetric key operations.

Recently the NESSIE consortium, in [156], for “medium term” (5-10 years) security rec-
ommends the use of 1536-bit keys for RSA and DLOG based public key schemes, and 160-bit
for elliptic curve discrete logarithms, suggesting a 1536/80 equivalence, which is in line with
[117], with the same cost-remark for EC as above. This recommendation is based on an as-

Table 6.3: NESSIE recommendations.
Equivalent symmetric key size 56 64 80 112 128 160
Elliptic curve key size 112 128 160 224 256 320
Modulus length (pq) 512 768 1536 4096 6000 10000
Modulus length (p2q) 570 800 1536 4096 6000 10000

sumed equivalence between 512-bit RSA keys and 56-bit keys, and an extrapolation of that.
However, it should be noted that during the course of producing this report, we discovered
that the NESSIE recommendations were based on a slightly inaccurate extrapolation formula,
leading to somewhat too large RSA keys.

RSA Labs, in [171], performs a cost-based analysis, and arrives at the following key-size
equivalences (Table 6.4). The time to break is computed assuming a machine that can break

Table 6.4: RSA Labs analysis.
Symmetric Key EC RSA Time to Break Machines Memory

56 112 430 < 5 min 105 trivial
80 160 760 600 months 4300 4Gb
96 192 1020 3 · 106 yrs 114 170Gb

128 256 1620 1016 yrs 0.16 120Tb

a 56-bit DES key in 100 seconds, then scaling accordingly. The Machines column shows how
many NFS sieve machines can be purchased for $10 million under the assumption that their
memories cost $0.50/Mbyte1.

The IETF recommendation RFC3766 [161] (which is largely based on the cost-model vari-
ation of [117]) suggests that an 80-bit symmetric key is equivalent to 1228-bit RSA/DLOG

1The 0.16 entry at the 128-bit level signifies that only 0.16 of the needed 120Tb memory can be purchased
for the available $10M budget.

24

keys, and 148-bit DLOG subgroups. Specifically, Table 6.5 is given. IETF also issued rec-

Table 6.5: IETF RFC3766 recommendations.
Equivalent symmetric key size 80 100 150 200 250
Modulus length (pq)/dlog field 1228 1926 4575 8719 14596
Dlog subgroup 129 186 284 383 482

ommended lifetime for (short) RSA signatures, [206]. This is based on a 100-fold security

Table 6.6: Short RSA signature key lifetimes from [206].
Keysize Lifetime

512 1 hour
576 10 hours
640 4 days
704 30 days
796 8 months

1024 1 year

margin, e.g. the 512-bit keys should require 5 days of attack effort.
Basically all of the above reports explicitly or implicitly discuss requirements for confiden-

tiality. It is sometimes argued that requirements for authenticity can be lower since data can
be re-authenticated at regular intervals with increasingly large keys and even new algorithms.
For signatures, the ETSI report [57] “approves” key-sizes inline with those above: 1024-bit
minimum factoring/finite field discrete log keys and 160-bit elliptic curve groups size, but
the approval is to be re-evaluated after five years (i.e. the approval is valid for the period
2001-2005).

6.2.1 Approach chosen by ECRYPT

Let n512 be the symmetric (e.g. DES) equivalent key-size to a 512-bit RSA key. Similar to
NESSIE and motivated by the above discussion, ECRYPT’s public key size recommendations
for factoring/RSA based and DLOG based schemes are based on an estimate for n512 and an
extrapolation of the attack complexity of the general number field sieve algorithm (GNFS),
the presently fastest method for computing integer factorization and discrete logarithms2.
Our approach is, as mentioned, thus based on the assumption on equivalence between RSA
and factoring3.

Specifically, the run-time of GNFS to factor N is estimated to (asymptotically) be

L(N) = Ae(C+o(1))(ln N)1/3(ln ln N)2/3
,

for a constant A, and C = (64/9)1/3. We shall make the assumption that the o(1)-term can,
for the key size ranges at hand, be treated as zero. From this, we can calculate A based on
L(512) = n512.

2Current records are 200 decimal digits [12] for GNFS and 274 digits [11] for numbers of special form for
which a special version, SNFS, applies.

3Some recent results [98] study situations under which RSA may, in fact, be easier than factoring.

25

This leaves us with the problem of determining the quantity n512. Experience from avail-
able datapoints suggests that the “resistance” of RSA-512 is some 4− 6 bits less than that of
DES-56. We here choose the more conservative end of this interval, i.e. n512 = 50.

We now get the following expression for the effective key-size of n-bit RSA modulus N :

s(n) =
(

64
9

)1/3

log2(e)(n ln 2)1/3(ln(n ln 2))2/3 − 14.

For elliptic curves and discrete log subgroups, as discussed above, we apply the “half-the-
size” principle.

6.3 Impact of Special Purpose Hardware

For a (secure) symmetric primitive, the only means to speed up attack time is to use par-
allelism by running on several general-purpose computers, or, to build a special purpose
key-search machine. To our knowledge, the largest such machine built, is the EFF’s “Deep
Crack”, [63], mentioned above. Such hardware is a reality one has to consider, and even
without further improvements, a 64-bit key would be recovered in less than a year.

Also for public key (number theoretic) schemes, special purpose cryptanalytic hardware
has been proposed.

The TWIRL device and and its (optical) TWINKLE predecessor, [178, 179], have been
proposed to speed up the so called sieving-step of factoring algorithms. It seems to be ac-
knowledged (at least by RSA Labs, [100], 2003) that TWIRL would seriously threaten 512-bit
RSA keys (which we already know can be attacked by general purpose computers and a quite
small effort, [5]) and that the cost of building a TWIRL device that factors 1024-bit RSA
keys “reasonably fast” is comparable to the cost of a parallel key-search machine retrieving
80-bit symmetric keys in comparable time.

Bernstein, [19], proposes a massively parallel machine for speeding up the so-called matrix
step of factoring algorithms and claims an impact of factoring based keysizes, requiring three
times as large keys. Later analysis [116], however, suggests a more moderate 17% increase,
and only under “optimistic” assumptions.

Finally, [159] (1999), describes a hardware design estimated to cost $10M that could
possibly break elliptic curves over a binary field of size 2155 in about one month. However,
since the design would be less cost-effective for general finite fields, a way to avoid issues is
to avoid binary fields. In [207] it is estimated that curves over binary fields should have 8-10
bit larger keys to mitigate the effect of such hardware.

Considering that most of the proposed machines above seem to effect only a limited range
of keysizes, or have limited impact, for the purpose of this report, the only special purpose
hardware we shall consider (besides hardware for finding symmetric keys) is the machine
discussed in [159]. Thus, we propose concerned users to add about 10 bits in the binary field
case. However, it is important to keep up to date with advances in special purpose hardware;
we by no means rule out future advances in this area.

6.4 Quantum Computing

Both of the fundamental intractability assumptions on integer factoring and discrete loga-
rithms break down if a (large) quantum computer could be built as demonstrated by Shor,

26

[181]. For instance, integers N can be factored in only O(log3 N) “steps” on such a machine.
We are, however, quite far from realizing such a device. In [193], an experimental result for
factoring the “toy” number N = 15 is reported with a run-time of just under one second.

For symmetric cryptography, the effect would also be dramatic, though not devastating.
By the generic search algorithm due to Grover, [65], key-sizes are in effect cut in half. Also
this algorithm has been implemented on small toy examples, [40]. A quantum computer
would also imply finding n-bit hash function collisions with complexity 2n/3, [30].

The recommendations in this report assumes (large) quantum computers do not become
a reality in the near future.

Chapter 7

Recommended Key Sizes

With reference to the above discussion, ECRYPT2 recommends the following minimum key
sizes to protect against different attackers. Note that these are minimum sizes, giving pro-

Table 7.1: Minimum symmetric key-size in bits for various attackers.
Attacker Budget Hardware Min security
“Hacker” 0 PC 53

< $400 PC(s)/FPGA 58
0 “Malware” 62

Small organization $10k PC(s)/FPGA 64
Medium organization $300k FPGA/ASIC 68
Large organization $10M FPGA/ASIC 78
Intelligence agency $300M ASIC 84

tection only for a few months.
Given any desired (symmetric key) security level, one may need to convert the symmetric

key into an equivalent asymmetric key size. Based on the preceding discussion, we propose
the following symmetric/asymmetric size-equivalences, see Table 7.2. We note that it agrees
reasonably well with Table 1 of [114].

It may also be interesting to see what today’s commonly deployed RSA/DLOG key-sizes
offer in terms of equivalent symmetric key-size. This can be found in Table 7.3.

Note that the DLOG and EC recommendations applies for prime order fields. For finite
field DLOG schemes, the table may need to be revised taking into account more efficient
attacks that are known to exist for DLOG over binary fields. However, we are not aware of
any practical deployment of systems based on discrete logarithms in binary fields.

For EC, recommendations for binary fields need to take into account that the field size
should be 2p, where p is a prime number1 of bit-size slightly larger than the group/key bit-size.
If in addition, the special purpose HW of [159] is considered a threat, roughly an additional
10 bits should be added to the EC key size in this case.

1Unless p is a prime, more efficient attacks are known, [205].

27

28

Table 7.2: Key-size Equivalence.
Security (bits) RSA DLOG EC

field size subfield
48 480 480 96 96
56 640 640 112 112
64 816 816 128 128
80 1248 1248 160 160

112 2432 2432 224 224
128 3248 3248 256 256
160 5312 5312 320 320
192 7936 7936 384 384
256 15424 15424 512 512

Table 7.3: Effective Key-size of Commonly used RSA/DLOG Keys.
RSA/DLOG Key Security (bits)

512 50
768 62

1024 73
1536 89
2048 103

7.1 Recommended Parameters: Non-confidentiality Objectives

The above minimum requirements are intended to keep messages’ confidentiality for a certain
time. For other security objectives, things may be a little different.

7.1.1 Non-repudiation

The possibility to recover security is better here, since one can in principle re-authenticate (and
possibly revoke) at regular intervals when one suspects an imminent compromise. Therefore,
somewhat shorter keys may be acceptable.

7.1.2 Message Authentication

Basically, the same recovery mechanisms may be applicable here. Secondly, some applications
are of such nature that the value of the data as “authentic” is essentially only a real-time
issue, and efficiency/bandwidth may in addition here require a lowered security.

Since there is usually no or little gain (in efficiency) in using short (symmetric) keys,
the above recommendations hold (in general, see discussion below) also for authentication
key sizes. Assuming a large enough key is chosen (and secure protocols/functions are used),
the main threat is therefore forging by “guessing”. (We note that there are MACs, e.g.
Carter-Wegman based MACs, where one can guarantee that such attacks are the only ones
possible.)

29

For MAC tags, it may be acceptable to use shorter values than the MAC key size. In [70]
an absolute minimum tag size of 32 bits is motivated.

An example where even the authentication key may be relatively short is in application
of so-called Manual Authentication (MANA) Protocols. A typical application is a one-time
authenticated transfer of a data item (e.g. a public key certificate) between two devices using
short-range radio. A (one-time) PIN is chosen as a key and is entered (using physical side-
channel) in both devices. If implemented correctly, the possibility to forge can be explicitly
evaluated, and the key can sometimes be allowed to be shorter than the tag, e.g. a 16-bit
key and a 160-bit tag. Note though that these arguments break down if the same key is
re-used. See [61] for further details. It should also be noted that such analysis often relies on
assumptions such as “physical proximity”, which is (partly) used to rule out certain attacks.

In general, when considering minimum acceptable tag size, it is important to analyze
whether or not the application is designed in such a way that a possible attacker may have
oracle access to a MAC verification mechanism. Short tags should not be used if this is the
case.

7.1.3 User Authentication

For user authentication (using symmetric key challenge-response type protocols) the impor-
tance of the length of the response depends on the time period of validity of the authentication
(the “session” length). If an attacker is lucky in guessing one response, he will most likely
be detected during re-authentication (if such occurs). The impact of impersonation during a
certain time period is of course application dependent, but is generally larger than the impact
of faking occasional messages. Responses of 64 bits seem a general minimum. A one-time
password (OTP) generator typically produces 24-32 bit values, but is usually used in con-
nection with a longer term, user selected key (a password). Unless physical security of the
communication channel is present (security against e.g. hijacking), it is important that the
user authentication is coupled with a key agreement followed by integrity protection. That
is, at the same time as the response is generated, a session key for integrity protection is
generated from the same challenge and used to integrity protect every subsequent message.
With proper replay protection of challenges, this limits the effect of a faked response to be
essentially a short-lived Denial-of-Service attack.

7.1.4 Hash Functions

The main consideration for a secure2 hash function is the size of the outputs. If the application
requires collisions to be difficult to find, the output must be twice the desired security level.
This is the case e.g. when used with digital signatures. When used as a keyed hash for message
authentication, however, the outputs may often be truncated, see above.

7.1.5 Nonces

So-called nonces (number used once) are generally required to be as long as the symmetric
keys used, i.e. match the security level. This is due to attacks based on the birthday paradox.
For example, an n-bit nonce (here often called a salt) used for deriving a session key from a

2Note the recent developments on MD5 and SHA-1 in Section 10.2.

30

k-bit symmetric key will produce an overall security of about (n + k)/2 bits against off-line
collision attacks.

7.2 Security Levels

Keeping in mind that the security level of Table 7.1 only gives very basic protection (a few
months) we need to add some margin to get real protection. At the same time, as we just
discussed, there are some applications with special properties that might allow lower security
requirements, and there may be some very constrained environments where a certain level
simply cannot be obtained. We would therefore like to define some security levels and quantify
what security they reach and in which cases they might be acceptable. That is, rather than
mandating use of certain key-sizes, we would like to be more practical and see what security
is obtained in different cases.

Table 7.4: Security levels (symmetric equivalent).
Security Security Protection Comment
Level (bits)
1. 32 Attacks in “real-time” Only acceptable for

by individuals auth. tag size
2. 64 Very short-term Should not be used for

protection against confidentiality in new
small organizations systems

3. 72 Short-term protection
against medium
organizations, medium-
term protection against
small organizations

4. 80 Very short-term protection Smallest general-purpose
against agencies, long- level, ≤ 4 years protection
term prot. against small (E.g. use of 2-key 3DES,
organizations < 240 plaintext/ciphertexts)

5. 96 Legacy standard level 2-key 3DES restricted
to ∼ 106 plaintext/ciphertexts,
≈ 10 years protection

6. 112 Medium-term protection ≈ 20 years protection
(E.g. 3-key 3DES)

7. 128 Long-term protection Good, generic application-
indep. recommendation,
≈ 30 years

8. 256 “Foreseeable future” Good protection against
quantum computers

A few comments. An 80-bit level appears to be the smallest general-purpose level as
with current knowledge, it protects against the most reasonable and threatening attack (key-
search) scenarios. However, see also further discussion below. The 32 and 64-bit levels should

31

not be used for confidentiality protection; 32-bit keys offer no confidentiality at all relative to
any attacker, and 64-bit offers only very poor protection. Nevertheless, there are applications
when these levels may be necessary if security is to be provided at all, e.g. for integrity tags.
While we certainly do not think this level of security should ever be promoted, it is at the
same time important to be aware that some narrow-bandwidth applications would be imposed
with a considerable over-head even with such short tags, and it is important to highlight what
attacks would then become possible.

The choices 112/128 for the high and very high levels are a bit conservative based on ex-
trapolation of current trends. However, since there exist well-proven standardized components
that supports these levels, it still seems to make sense to define them that way.

While both 80 and 128 bit keys provide sufficient security against brute force key-search
attacks (on symmetric primitives) by the most reasonable adversaries, it should be noted that
the choice between 80 and 128 bits really does matter, in particular if one considers attack
models based on pre-computation and large amounts of available storage, i.e. the trade-off
attacks of Section 5.1.1. Considering such attacks, 80 bits would be practically breakable,
and 128 bits might correspond to an effective 80-bit level, etc. As a simple rule of thumb (in
particular considering that the performance penalty is small for symmetric primitives), one
may choose to double the key size to mitigate threats from such attacks.

7.3 How to Deal with Very Long-term Security

In some applications, e.g. voting, legally binding signatures, protection of state secrets, etc,
very high security levels may be needed. As discussed previously, it can be difficult to obtain
and maintain such high security levels. Apart from the fact that non-technical issues, outside
the scope of this report, tend to matter more, there is also a technical problem appearing.
Namely, that is difficult to predict future cryptanalytic advances. As an example, a 1024-bit
integer would be factored some 1000 times faster by the Number field sieve, than by the
Quadratic sieve (QS) method, so yet unknown future advances could really make a difference.
That is, even if extrapolation of key sizes would be a valid approach for the next, say 30
years, one cannot exclude that certain algorithms become more or less completely broken
over such long time frames. So, how should we take cryptanalytic progress into account? If
cryptanalysis affecting RSA had, over the last, say, 20 years an effect comparable to Moore’s
law (independently, on top of the actual Moore’s law), then it would not be reasonable
to assume that that progress stops at this very moment, and it could also be argued to
be a stretch of the imagination that it would suddenly go much faster (even though both
possibilities are in principle conceivable). For all practical purposes (i.e., a position one can
defend) one should assume that future progress follows the trend that we have seen in the
past and base one’s decisions on that assumption.

Advances have often been done in steps (e.g. the improvement from QS to NFS), and
beyond approximately 10 years into the future, the general feeling among ECRYPT2 partners
is that recommendations made today should be assigned a rather small confidence level,
perhaps in particular for asymmetric primitives.

All is not lost though. By (again) handling security as a matter of due process, it may
still be possible to maintain message authenticity and non-repudiation over long periods of
time. By keeping up to date on cryptanalytic and technological advances one could, as fear
of compromise grows stronger, re-authenticate a message (and the existing signature) with

32

larger key size and/or different algorithms.
Another approach to message authenticity is to authenticate messages with more than

one algorithm. For instance, sign a message with two different algorithms, and consider the
(compound) signature valid if and only if both signatures check out. It is here important that
keys and parameters are generated randomly and independently, and, depending on what the
feared future advances might be, it could be essential that the algorithms are very “different”.
For instance, signing a message both with RSA and discrete logarithm technology does not
offer any additional security if quantum computers become a reality. One can also consider
combinations of asymmetric and symmetric keys, e.g. both sign a message, and add symmetric
key based integrity.

For confidentiality it may be more difficult to apply the security process thinking since
once confidentiality is lost, it is gone forever. However, additional protection may be offered
by multiple encryption, again using sufficiently “different” algorithms. The classical one-time-
pad scheme may also be applicable to very high security levels, assuming the key management
can be solved.

7.4 A Final Note: Key Usage Principles

Besides the above recommendations, it is important to be aware of some principles for how
to use keys and other parameters.

First, the randomness principle must be followed: keys must be randomly or pseudo-
randomly generated. If less key-material than needed is available, a pseudo-random function
should be applied to obtain the required amount of key. Of course, we do not claim that
the attack resistance is still any higher than the size of the input to the random number
generator. Rather, we want to stress that other, ad-hoc key-expansion methods could decrease
the security. As a basis for generating (pseudo)random bits it is crucial to properly seed
one’s random number generator. This is an issue that is too often overlooked in practical
applications.

Secondly, the principle of key-separation applies: the same key should never be used for
two different purposes (e.g. use distinct keys for encryption and integrity protection, etc).
Moreover, the same key should not be used twice with different transforms (e.g. encryption
transform A should not use the same key as encryption transform B). For symmetric encryp-
tion, do not use the same transform inputs (key, IV, etc) twice to process different messages.
For integrity protection, make sure all messages are distinct (e.g. by including a counter) to
avoid replay. This recommendation holds also for other primitives, e.g. do not use the same
signature key in two different systems.

Finally, for electronic signature schemes, you should not be too “promiscuous” in how you
use your secret key to sign. Never sign a document provided by some other party without
first applying a secure message padding scheme, including appropriate randomization, see
Chapter 14.

Part II

Symmetric Primitives

33

Chapter 8

Block Ciphers

8.1 Overview

Block ciphers specify keyed, invertible transformations from b-bit blocks to b-bit blocks, un-
der the influence of n-bit keys. That is, a block cipher is defined by two algorithms, E,
that encrypts, and D that decrypts, such that for all n-bit keys k, and all b-bit blocks x,
D(k, E(k, x)) = x. Most ciphers support only one block-size, but in many cases several key
sizes are supported.

A number of security properties are required for a block cipher to be considered secure.
Needless to say, one such requirement is that no key-recovery attack (e.g. differential [21],
linear attacks [124] etc) of complexity better than 2n is known. Stronger notions of security
are for instance various notions of indistinguishability. What does that mean? Well, the
reader may be familiar with the Turing test for artificial intelligence, where a human can
“chat” (via keyboard/screen) with another entity, asking questions like “Describe in single
words only the good things that come into mind about your mother”, etc. This other entity
is either a human or a computer program. The program is considered artificially intelligent,
if the user cannot tell if he is chatting with a human or the program. In our case, the attacker
gets a plaintext, and a value which is either an encryption of said plaintext (for an unknown,
random key), or, a random b-bit string. The attacker is challenged to guess which value
he got, and to this end he may issue (adaptive) chosen message queries to an “encryption
oracle”, on any message (except the challenge). If he cannot succeed with probability much
better than one-half, the cipher is said to be indistinguishable from a random function. The
intuition is that if the encipherments look just like random strings, they should not “leak”
useful information about the plaintext. Various relations and equivalences are known between
different security notions.

Note that a block cipher should never be used in the raw, but rather run in a specified
mode of operation, see Section 8.4. We stress in particular that block ciphers do not provide
any real integrity protection, and without added integrity protection, also confidentiality may
be lost, [18].

Also the block size may define upper bounds on the security. A small block size may
enable creation of dictionaries. Also, “non-random” behavior that might be exploitable starts
to appear after about 2b/2 encrypted blocks. This chapter has therefore been divided according
to block size.

For a more extensive discussion of block-cipher security properties, see the NESSIE eval-

35

36

uation report, [156]. For more information on explicit block ciphers, see [26].

8.2 64-bit Block Ciphers

8.2.1 DES

Definition: NIST FIPS 46-3, [140].

Parameters: 56-bit key and 64-bit block size

Security: Key length inadequate.

Deployment: Widespread, e.g. RFC 2406 (IPsec), RFC 2246 (TLS).

Implementation:

Public analysis: Papers such as [21, 124] (see below).

Known weakness: Susceptible to differential [21] and linear cryptanalysis [124] and their
extensions, which reduces effective key size by roughly 10-12 bits. However the key-size
is already acknowledged to be insufficient.

Comments: Withdrawn by NIST in 2004.

8.2.2 3DES

Definition: NIST SP-800-67, [148]. (Also standardized in ISO/IEC 18033-3 [89].)

Parameters: 112-bit and 168-bit key and 64-bit block size.

Security: Because of the iterative construction of 3DES, there exist key search attacks on
3DES whose work function is significantly less than is suggested by the key length.
For three-key 3DES this work function reduces down to 2112 operations (or even down
towards 2100 under certain attack models) whereas for two-key 3DES the work function
reduces from 2112 down to 2120−t if the attacker has access to 2t plaintext/ciphertext
pairs (t > 8) using the same key.

Deployment: Widespread; e.g. 112-bit 3DES widely used in financial applications, 168-bit
3DES featured within IPsec, SSL/TLS, etc.

Implementation:

Public analysis: Cryptrec report [46].

Known weakness: A variety of structural properties are well-known but easily avoided.

Comments: In [149], 112-bit 3DES is re-affirmed by NIST only through the year 2010 (on
the basis that by the above discussion, it offers 80-bits of security when 240 plaintext-
ciphertext pairs available to an attacker), and 168-bit 3DES is recommended only
through the year 2030 (on the basis that if offers only 112-bits of security).

37

8.2.3 Kasumi

Definition: 3GPP TS 35.202, [1].

Parameters: 128-bit key and 64-bit block size.

Security: As claimed.

Deployment: UMTS.

Implementation: 3GPP TS 35.203, and 35.204 [2, 3] contain test data.

Public analysis: Evaluation report [4], paper [28]. Some provable security relative to linear
and differential cryptanalysis has been established [101].

Known weakness: In [20] a related-key attack requiring ∼ 254 plaintext/ciphertext pairs
and complexity ∼ 276 was presented. Related-key attacks’ practical relevance depends
on context and does not impact the 3GPP use.

Comments: Variant of MISTY-1. Kasumi to be licensed for use in UMTS.

8.2.4 Blowfish

Definition: See [177].

Parameters: 32–448-bit keys and 64-bit block size.

Security: As claimed.

Deployment: Popular in IPsec configurations. List of products can be found at [27].

Implementation: See [27] (includes test vectors).

Public analysis: Vaudenay, [197], found weak keys and known plaintext attacks, but only
for round-reduced Blowfish, see also the more recent paper [102]. Rijmen, [168], found
a 2nd order differential attack, also against a round-reduced version. These attacks
cannot be extended to the full cipher. Schmidt made some observations about the key
schedule, [176], that do not seem to effect the security.

Known weakness:

Comments:

8.3 128-bit Block Ciphers

8.3.1 AES

Definition: NIST FIPS PUB 197, [143]. (Also standardized in ISO/IEC 18033-3 [89], part
of Suite-B [157])

Parameters: 128-, 192-, and 256-bit key and 128-bit block size.

Security: As claimed.

38

Deployment: Widespread, included in TLS, S/MIME, IPsec, IEEE 802.11i, etc.

Implementation:

Public analysis: NIST report [152], NESSIE and Cryptrec reports [156, 46].

Known weakness:

Comments: So-called algebraic attacks have been put forward as providing potential means
to attack AES. While issues remain somewhat opaque, the AES cannot currently be
considered vulnerable to such analysis. Instead, security aspects of implementation(s)
of the AES may be the most pressing issue. (These aspects are shared with many
cryptographic primitives.) So, while not directly related to the cryptographic strength
of the AES, cache-timing attacks against unprotected implementations seem to present
a practical threat, at least when the AES is not executed in a trusted environment.

Implementation attacks aside, there are still no discernible cryptographic weaknesses in
the AES.

For more info on AES, see [10, 53].

While AES is by far the most widely used 128-bit blockcipher, it is by no means the only
such algorithm. If a backup algorithm is desired, one might for instance consider Camelia,
[89].

8.4 Modes of Operation

To actually perform encryption on large messages, a block cipher needs to be run in a mode
of operation. Choosing a secure mode is important as the way in which the block cipher is
used could lead to insecurity, even if the block cipher as such is secure.

Numerous modes with many different properties exist and have been proposed. While
some modes also provide for message integrity, notice that this is not the case for any of the
three modes below. If integrity is desired, a secure MAC must be used together with these
modes, see Chapter 11. Integrity preserving modes can be found in e.g. the NIST specification
[147]. A comprehenshive overview of authenticated encryption can also be found in [23].

Below we discuss only the three most common modes, their properties and recommenda-
tions for how to apply them securely. Note that different standards for modes of operation
may not be interoperable, e.g. due to different padding and initialization (IV) schemes. An
example of one standards specification is ISO/IEC 10116, [86]. Another set is that by NIST,
[144, 146].

As noted below, some modes have formally been proven to be secure in certain models,
assuming the block cipher used is secure. Generally speaking, the quantitative measure of
security obtained by these proofs decay with the number of message blocks processed under
a given key. Security, in a strong sense, is lost as the number of processed blocks approaches
2b/2 for a b-bit block cipher. Thus, re-keying should occur well before this bound is reached.
In practice, this is only an issue for the 64-bit block ciphers above.

IVs should follow similar size considerations as for nonces, Section 7.1.5.

39

8.4.1 Electronic Code Book Mode (ECB)

This mode should only be used to encrypt messages that are smaller than or equal to the block
size, as information about the message otherwise leaks (e.g. it is possible to tell if two parts
of the messages are identical or not). For the same reason, a given key should only be used
to encrypt one single message. For messages smaller than the block size, message padding
to fill an entire block is necessary, thus creating (slight) bandwidth overhead. If an error in
the cipher text occurs, the decryption will produce “garbage” due to error propagation, i.e.
about half of the bits of the plaintext will be changed.

8.4.2 Cipher Block Chaining (CBC)

CBC is probably the most widely used mode of operation. Besides the key, an initialization
vector (IV) is needed. This IV should be random and independent for each message. The
same key/IV pair should not be used to process more than one message. Integrity of the IV
should be assured, as it will otherwise enable an attacker to introduce predictable changes in
the first decrypted plaintext message on the receiver side and/or perform certain attacks.

CBC either requires padding, or a special treatment of the last block, e.g. applying so
called OFB mode to the last block or using so-called cipher text stealing. Both of these may
however leak information and/or are sensitive to certain attacks, [139]. Note that padding
schemes are generally sensitive to side-channel attacks, where the attacker can inject messages
towards the receiver and observe padding-error notifications returned, [196, 138]. This is yet
another reason why integrity/authenticity is important: without it, confidentiality may also
be lost.

If an encrypted block is subject to bit-errors, the corresponding plaintext block will be
garbled, and the following block will have bit-errors matching those of the erroneous cipher
text block.

If IVs are explicitly signaled between sender and receiver (or otherwise agreed upon) for
each message, CBC has a random access property in that the order of arrival of messages
(e.g. IP packets) does not matter. However, within a given message, processing must be done
blockwise sequentially.

If the block cipher is secure, CBC can be proven to be secure, [15].

8.4.3 Counter Mode (CTR)

CTR basically produces a stream cipher (see next chapter) from a block cipher. Besides the
key, an IV is needed. The IV should be unpredictable to provide security, e.g. against attacks
such as [131]. It is of paramount importance that the same IV/key pair is not used to protect
two different messages.

CTR can provide random access also within a given message and does not require padding.
As we have argued, modes of operation will not in general provide any message integrity.

This is particularly true for CTR as an attacker trivially can modify bits of the plaintext.
If the block cipher is secure, CTR can be proven to be secure, [15].

8.4.4 Hybrid Encryption

Later in this report we define schemes for Hybrid Encryption (Key/Data Encapsulation
Modes, KEMs/DEMs), see e.g. Section 16.2.1. These combine asymmetric and symmetric

40

cryptography. Hybrid schemes can sometimes be proven secure, but requires careful choice of
the symmetric primitives (block ciphers/modes, MACs, etc). It is recommended to use only
primitives allowed/defined by the respective standard. For instance, the standard ISO/IEC
18033-2 [88] specifies a DEM using CBC (ISO/IEC 10116) and a MAC according to ISO/IEC
9797-2. On the other hand ISO/IEC 19772 standardises six authenticated encryption tech-
niques, and was published in February 2009. The techniques it covers are: OCB 2.0, key
wrap, CCM, EAX, encrypt-then-MAC (combining any symmetric encryption method with
any MAC) and GCM.

Chapter 9

Stream Ciphers

9.1 Overview

A stream cipher is an algorithm that takes a key (and possibly other information) and pro-
duces a (for most practical purposes) arbitrary long sequence, the keystream. This keystream
is then combined with the cleartext to form the cipher text. In most commonly used stream ci-
pher applications today, the keystream is bit-wise added modulo 2 to the cleartext (XORed),
this is then called a binary additive stream cipher. Some ciphers use another combination
operation, which in some cases can even provide some integrity protection. Note that it is
obvious that a binary additive stream cipher in itself provides no integrity protection; an
attacker can flip individual bits (even if he does not know if he flips one to zero or vice versa).
Binary additive stream ciphers should therefore always be used with integrity protection.

Stream ciphers come in two flavors. Synchronous stream ciphers require sender and re-
ceiver to maintain synchronization within the key stream by external means (e.g. including
an explicit synch value in each message). Self-synchronizing stream ciphers, allow temporary
loss of synch, which is then automatically regained after a while. Essentially all practically
used stream ciphers today are synchronous.

It is obvious from construction that the security of a stream cipher depends on the “ran-
domness” of the keystream, and if the stream appears indistinguishable from true random
bits, security follows immediately. However, few stream ciphers have managed to resist all
distinguishability attacks, but if a distinguishing attack requiring huge amounts of known
keystream exists, it may not be a disaster for the practical security.

Why would one choose a stream cipher rather than a block cipher? Usually, any or all of
the following three properties may be motivation:

1. Stream ciphers are usually designed with high speed and/or constrained computing
environments as requirements, hence many stream ciphers are quite fast and “light-
weight” (though note that some constructions have historically at the same time suffered
security-wise).

2. Stream ciphers do not require padding of messages, hence they may offer bandwidth
savings in critical applications.

3. Stream ciphers do not propagate bit-errors; single transmission bit-errors in ciphertext
translates to single bit-errors (in the same bit positions) after decryption.

41

42

The last motivation is probably also the most controversial since, as noted, it also means that
attackers can flip message bits if integrity protection is not used, and integrity protection
would at the same time work against the error-resistance of the application. Nevertheless,
many voice-over-radio systems (without integrity protection) use stream ciphers since the
voice decoders usually have high tolerance to single bit-errors, but cannot cope well with
frame-errors.

Note that binary additive stream ciphers may lose all security if the same key (or more
precisely, the same keystream) is used to encrypt two different messages (creating so-called
two-time pad).

For a more extensive discussion of stream-cipher security properties, see the NESSIE
evaluation report, [156].

9.1.1 A Note on Pseudo random Number Generation

In principle, any stream cipher can function as a pseudo random number generator (PRNG).
Are there any differences in requirements on a PRNG and a stream cipher? Looking purely
at the requirements on the outputs, using a strong definition of stream cipher security, there
is no real difference, both need to produce outputs computationally indistinguishable from
random. In practice there are usually some differences in requirements though:

• Stream ciphers are usually called for due to bandwidth saving (avoid padding) or pro-
cessing speed, otherwise one can just use a block-cipher in a suitable mode (which
could be a stream cipher emulating mode). A PRNG can on the other hand often be
acceptable even if the speed is quite low.

• As mentioned, a distinguishing attack on a stream cipher may not be catastrophic, but
if a PRNG is used to generate keys for other ciphers, it could be a completely different
story. There may thus be reason to have stronger security requirements on a PRNG.

• Re-keying of a stream cipher is usually done to avoid “wearing out” the key or to
achieve synchronization, and the requirements on avoiding key-stream re-use are quite
well understood. A PRNG may be “re-seeded” to improve the randomness of the
internal state, i.e. to “add entropy” to an existing state, and this is currently done more
as an art than a science.

9.1.2 eStream

As can be seen below, very few stream ciphers are included in this report, mainly due to the
lack of publicly available stream ciphers that meet the above requirements while maintaining
sufficient security. However, ECRYPT in 2008 finalized a public development effort of efficient,
secure stream ciphers, [55]. The following stream ciphers are included in the portfolio.

The hardware ciphers all support 80-bit keys and aim for an 80-bit security level. While
Salsa20 claims 256-bit security when used with 256-bit keys, all the other software ciphers
claim 128-bit security. For more information, we refer to [55].

F-FCSR-H

After finalizing the eStream effort, a severe attack on F-FCSR-H appeared. Thus, the stream
cipher F-FCSR-H was removed from the portfolio.

43

Table 9.1: eStream Portfolio.
Software-optimized Hardware-optimized
HC-128 Trivium
Rabbit Grain v1
Salsa20/12 MICKEY v2
SOSEMANUK

9.2 RC4

Definition: see [80, 81].

Parameters: variable key size.

Security: While no key recovery attack is known when used directly as a keystream gener-
ator, RC4 is highly sensitive to attacks which exploit re-keying and re-initialization.

Deployment: Widespread, e.g. SSL/TLS, IEEE 802.11b, etc.

Implementation:

Public analysis: Cryptrec [46], see also e.g. [80].

Known weakness: Various distinguishing attacks apply, e.g. [122]. Some key recovery at-
tacks are known for specific implementations with re-keying, [22]. State recovery attacks
have also been found [130]. The first bytes of generated keystream are particularly vul-
nerable to cryptanalysis. The best key recovery attack on the implementation WEP is
a passive one [198].

Comments: Recommendations often include dropping the first 512 bytes of generated keystream.
However, due to the ease of misuse, ECRYPT2 recommends against using RC4 as a gen-
eral purpose stream cipher.

9.3 SNOW 2.0

Definition: [90]

Parameters: 128 and 256-bit keys.

Security: No attacks of any practical relevance are known.

Deployment: Used in DisplayPort, [199].

Implementation:

Public analysis: NESSIE [155]. See also [204, 129, 158].

Known weakness: Given about 2174 bits of keystream and 2174 work, it is possible distin-
guish SNOW 2.0 outputs from true randomness, see [158]. The attack is non-trivial
only for 256-bit keys and the amount of keystream needed will not occur in practice.

44

Comments: SNOW 2.0 is an enhancement of “SNOW” as submitted to NESSIE. SNOW
2.0, in turn, exists in a further modified version, “SNOW 3G”, and has been adopted
by ETSI SAGE for inclusion in the 3GPP UMTS standard. The main difference in
SNOW 3G is the addition of a second S-box giving higher resistance against possible
future advances in algebraic cryptanalysis.

Chapter 10

Hash Functions

10.1 Overview

Cryptographic hash functions are widely used in computer and network security applications.
They operate on a message of (for practical purposes) arbitrary size and produce a fixed-size
fingerprint, or digest, of the message. Depending on the application, some or all of a number
of security properties are required from the hash function h(·). Potential properties that we
might appeal to are:

Pre-image resistance: Given an output y = h(x) (but not a corresponding input x) it is
practically infeasible to find x. Such a property might be useful when one wishes to
commit to the value x at some point in time while keeping the value of x secret until
later.

2nd pre-image resistance: Given an output y = h(x) and a corresponding input x it is
practically infeasible to find another input z 6= x such that h(z) = h(x). This property
might be used to prevent some party from changing from a committed value.

Collision resistance: It is practically infeasible to find any pair of distinct inputs x and z
such that h(x) = h(z). This property is often required to protect electronic signature
schemes against forgeries. In such schemes the hash of a message is typically signed as
a representation of that message. Thus if an attacker can find two inputs x and z that
collide with respect to some hash function, then the attacker might be able to re-use a
legitimate signature on x as a correct, but falsely-obtained, signature on z.

Random oracle property: The function h(·) “behaves” as a randomly chosen function.
Assuming this property holds sometimes makes it possible to formally prove the se-
curity of public key encryption and signature schemes. We shall discuss this more in
Section 12.1.

While one can construct contrived examples of functions that are collision resistant but not
pre-image resistant, the hash function properties have been ordered in terms of the difficulty
faced by an opponent, with the task of finding a pre-image being the hardest. In the absence
of any analytic weaknesses, only brute force methods are available to the attacker. More
precisely, if n is the size of the hash outputs, one would from a secure hash expect around
2n operations to be required to break the first two properties (though this decreases as the

45

46

number of available targets increase) and around 2n/2 operations to break the property of
collision resistance (due to the birthday paradox). Consequently, one needs to choose a secure
h with a large enough n so that these numbers meet application-dependent requirements on
“practical infeasibility”.

It is quite clear from construction that none of the hash functions here can be considered
“random oracles” in a generic sense, and it has in fact been established that no fixed function
can have all required properties, [34]. The practical implications of the so-called random oracle
model has therefore been debated, and we shall return to this in the asymmetric algorithm
part of this report.

For a more extensive discussion of hash function security properties, see the NESSIE
evaluation report, [156]. For more information on explicit hash functions, see [54, 74].

10.2 Recent developments

A lot of advances in analysis of iterated hash functions, in particular from the MD5/SHA
family, has been made since work on the first revision of this report started, e.g. [6, 96, 97,
103, 104, 191, 190, 201, 202, 203].

To summarize, MD5 has to be considered completely broken from collision resistance point
of view (explicit collisions can be demonstrated), and SHA-1 provides only a very marginal
security. In both cases (but with different complexity) collisions can be found from known
IVs. This means that applications to message authentication (which are based on secret IVs)
are not directly threatened, though some concerns about further advances may be raised, see
Section 11.2. Also, it is not possible to completely choose the messages that collide, and one
may argue that also signatures therefore are (in practice) secure as long as only “random”
collisions can be found. The latter is, however, a too optimistic assumption. It has been shown
that both syntactically correct public key certificates, as well as pairs of human readable
colliding documents can in practice be produced, [36, 47, 118, 190]. Therefore, use of SHA-1
and in particular MD5 should be avoided with signatures. A more fundamental solution to
strengthen digital signature schemes relying on not-collision resistant hash functions would
be randomized hashing [68]. See also [52] for more discussion.

Note that some “obvious” techniques aiming at improving/repairing the security of some
hash function(s) may not have the effect one hopes. For instance, simple schemes such as
concatenating the output of some commonly used hashes may not help, see [96].

10.3 MD5

Definition: RFC 1321, [170].

Parameters: 128-bit hash output, max input size 264 − 1 bits.

Security: Not collision-resistant. Indeed collisions can be found within seconds on a common
PC.

Deployment: Widespread; e.g. in SSL/TLS, IPsec, etc.

Implementation: C-source code available in RFC 1321, [170].

Public analysis:

47

Known weakness: Collisions have been found, [191], with low computational complexity
when the form of the message is restricted over 596 bits (though the total message
length may be greater and the form of the remainder is unrestricted). Collisions for
(valid) public key certificates have been reported, [119, 190], and password recovery
attacks applicable to MD5 usage in concrete applications are known, [120, 175]. A
practical attack creating a rogue Certification Authority has been demonstrated, [191].
A preimage attack with a complexity of 2124.4 is also known [174]. Further cryptanalytic
improvements should be anticipated.

Comments: MD5 should not be used in new deployments and should be phased-out of
existing applications (in particular signatures) as soon as possible. Further comments
are available via the ECRYPT statement on hash functions, [52].

10.4 RIPEMD-128

Definition: see [169].

Parameters: 128-bit hash output, max input size 264 − 1 bits.

Security: As claimed; collision search requires 264 iterations of the compression function.
However, this is no longer adequate.

Deployment: Unknown.

Implementation: see [169].

Public analysis:

Known weakness:

Comments: While collisions on RIPEMD are reported in [201], RIPEMD is a significantly
different design to RIPEMD-128. However, collisions for reduced, 3-round, RIPEMD-
128 are reported in [133].

10.5 RIPEMD-160

Definition: ISO/IEC 10118-3, [87] (see also [169]).

Parameters: 160-bit hash output, max input size 264 − 1 bits.

Security: As claimed; collision search requires 280 iterations of the compression function.

Deployment: Permissible algorithm in IPsec, IEEE Std 1363, and OpenPGP.

Implementation: see [169].

Public analysis: Cryptrec report [46].

Known weakness:

Comments: While collisions on RIPEMD have been reported, RIPEMD is a significantly
different design to RIPEMD-160. Partial attacks on 2- or 3-round reduced-versions (out
of 5 rounds) should be anticipated, [134].

48

10.6 SHA-1

Definition: NIST FIPS 180-1 and NIST FIPS 180-2, [141]. Also included in IEEE Std 1363,
ISO/IEC 10118-3, etc

Parameters: 160-bit hash output, max input size 264 − 1 bits.

Security: Not collision resistant. Full collisions have not yet been found, but may be ex-
pected at any moment.

Deployment: Widespread (included in e.g. IKE/IPsec).

Implementation: RFC 3174.

Public analysis: Cryptrec report [46].

Known weakness:

Comments: Collisions on SHA-1 can be found using 269 operations, [202], and newer results
even indicates somewhat lower complexity, [135, 121, 203]. Explicit collisions for the
full SHA-1 have (yet) not been found. The current “record” for an explicit collision
is when SHA-1 is reduced from 80 to 70 rounds, [38]. Preimage attacks for up to 45
rounds have been reported [39].

We recommend against using SHA-1 in new applications, and signature applications
with medium to high security should as soon as possible phase out use of SHA-1. Use in
message authentication, e.g. HMAC, does not appear immediately threatened, though
some caution could be motivated, see Section 11.2.

10.7 SHA-224, SHA-256

Definition: NIST FIPS 180-2, [141] (Also part of Suite-B [157], ISO/IES 10118-3).

Parameters: 224-bit and 256-bit hash outputs respectively, max input size 264 − 1 bits.

Security: As claimed; collision search requires 2112 and 2128 iterations of the compression
function respectively.

Deployment: Likely to become widespread.

Implementation:

Public analysis: Cryptrec report [46]. See also [62, 73].

Known weakness:

Comments: Collisions on SHA have been reported. While SHA has some similarities, it
is also a significantly different design to SHA-224 and SHA-256. SHA-224 is identical
to SHA-256, except that it uses a different IV and truncates the output. Simplified
variants of SHA-256 have been analyzed in [125, 133, 210].

Practical collision attacks for up to 24 (out of 64) steps have been reported [83].

49

10.8 SHA-384, SHA-512

Definition: NIST FIPS 180-2, [141] (Also part of Suite-B [157]).

Parameters: 384-bit and 512-bit hash outputs respectively, max input size 2128 − 1 bits.

Security: As claimed; collision search requires 2192 and 2256 iterations of the compression
function respectively.

Deployment: Unclear. Included in e.g. ISO 10118-3.

Implementation:

Public analysis: Cryptrec report [46].

Known weakness:

Comments: Collisions on SHA have been reported. While SHA has some similarities, it is
also a significantly different design to SHA-384 and SHA-512. SHA-384 is identical to
SHA-512, except that it uses a different IV and truncates the output.

Collision attacks for reduced variants of both SHA-512 and SHA-384 up to 24 (out of
80) steps have been reported [83].

10.9 Whirlpool

Definition: ISO/IEC 10118-3, [87] (see also [82]).

Parameters: 512-bit hash output, max input size 2256 − 1 bits.

Security: As claimed; collision search requires 2256 iterations of the compression function.

Deployment: Unclear.

Implementation: see [82].

Public analysis: NESSIE, [155].

Known weakness: A collision attack for Whirlpool reduced to 4.5 rounds (out of 10) with
a complexity of 2120 has been reported in [136].

Comments: Built using AES-like components and has a different design philosophy to the
MD-family.

50

Chapter 11

Message Authentication Codes

11.1 Overview

MACs aim to provide integrity protection. Given a key, k, they operate on a message,
M , by computing an m-bit check-value MAC(k, M), which is then usually appended to M
before transmission/storage. The receiver/retriever of the message similarly computes the
“expected” MAC value and compares it to the presented one.

The basic security notion for MACs is that without knowledge of the key, it should be
infeasible for an attacker (even after seeing many, possibly even chosen, M,MAC(k, M)-pairs)
to produce a new, (M ′, t′) pair so that t′ = MAC(k, M ′), other than by pure chance, guessing
the value with probability 2−m. Attacks included in this notion are:

Key recovery: retrieve the n-bit key, k.

Insertion: create (M, t) such that t = MAC(k, M).

Modification: observing some (M, t) = (M,MAC(k, M)) try to modify it into (M ′, t′) so
that t′ = MAC(k, M ′).

Note that the first attack is verifiable, whereas the two other usually are not: the attacker
knows when he has found the right key, but may not be able to tell if a candidate tag value is
correct. So, both n and m are upper bounds on the security with respect to different attacks,
but a smaller m can usually be accepted since non-verifiability of “tag-guessing” would only
create occasional forgeries, and/or, since many applications have a natural built-in re-try
limit.

Often, integrity is provided in addition to confidentiality, and one often sees discussion
on whether to use an encrypt-then-authenticate, or, an authenticate-then-encrypt strategy.
From security point of view, the best way is to first encrypt, then authenticate the encrypted
value. First, this has the benefit that the receiver can authenticate before spending resources
decrypting. Secondly, it seems intuitively clear that adding integrity check values (a form of
“redundancy”) before encrypting, cannot improve confidentiality, and will (at least in theory)
actually reduce security.

For a more extensive discussion of MAC security properties, see the NESSIE evaluation
report, [156]. Annex B of ISO/IEC 9797-1, [84], also provides a nice summary for the algo-
rithms included in that standard.

51

52

11.2 HMAC

Definition: RFC 2104 [112].

Parameters: A key and a hash function, often MD5 or SHA1. HMAC-MD5 provides m-bit
tag for 0 ≤ m ≤ 128 HMAC-SHA-1 provides m-bit tag for 0 ≤ m ≤ 160. Key size
depends on the hash function and the standard.

Security: As for all iterated MAC constructions, the security is not only limited by the
size of the MAC tag, but also by the square root of the size of the internal state (due
to birthday attacks). For HMAC-MD5 this results in a security level of 264 and for
HMAC-SHA-1 a security level of 280. The HMAC construction has provable security
under certain assumptions on the hash function, [14, 13].

Deployment: Widespread: SSL/TLS, IPsec, etc. Included in ISO 9797-2, NIST FIPS 198.

Implementation:

Public analysis: NESSIE report, [156].

Known weakness:

Comments: Note that increasing the key length beyond the hash function input block size
(512 bits for MD5 and SHA1) does not offer any increase in security. Some standards
(e.g. IPsec) allow the hash output to be truncated. Security proofs for HMAC depend
upon plausible (but untested) properties of the hash functions covered elsewhere in this
algorithm report. The recent advances in the cryptanalysis of MD5 (see Section 10.3),
and specifically HMAC-MD5 (e.g. [41, 106, 166, 58, 200]), suggest that implementers
move away from HMAC-MD5 as soon as possible.

Note: Please also refer to Section 10.6 for latest developments surrounding collision
resistance of SHA-1. Together with recent progress on analyzing HMAC-SHA1 with
round-reduced SHA-1, [41, 106, 166, 167], caution needs to be considered for the use of
HMAC-SHA1.

11.3 CBC-MAC-X9.19

Definition: ANSI X9.19 [7] (a.k.a. ANSI Retail MAC). Also included in ISO/IEC 9797-1.

Parameters: 112-bit key and 64-bit MAC output (with optional truncation)

Security: Beyond 232 MAC operations using the same key, security breaks down allowing
MAC forgery and efficient key recovery attacks, [165].

Deployment: Widespread

Implementation:

Public analysis: e.g. [165] (see above).

Known weakness: A wide-range of attacks requiring 232 MAC operations are known.

Comments: Implementers are recommended to move to alternative schemes for future ap-
plications unless frequent re-keying is used.

53

11.4 CBC-MAC-EMAC

Definition: ISO/IEC 9797-1, [84].

Parameters: Block cipher dependent, but particularly suited to the AES. Key length
matches AES key lengths and provides an m-bit tag for 0 ≤ m ≤ 128. 64 bits is
recommended.

Security: For MAC-forgery the birthday bound gives a work effort of 264 operations and for
key recovery the work effort is 2k operations where k is the length of the user-supplied
key.

Deployment: Potentially widespread.

Implementation:

Public analysis:

Known weakness:

Comments:

11.5 CMAC

Definition: NIST SP800-38B, [145]. Soon to be included in ISO/IEC 979-1

Parameters: A key and a block cipher, typically AES. The tag can have any length less
than or equal to the block size of the block cipher, although a tag length of at least 64
is normally recommended. The message can have any length.

Security: If a secure cipher with block length m is used, and no more than b blocks are
authenticated under a given secret key, then the probability of successful forgery is
bounded by b2/2m−2. For example, with 128-bit AES, if no more than 243 blocks are
authenticated — whether 240 messages of 8 blocks or 8 messages of 240 blocks — then
the probability of successful forgery is bounded by 286/2126 = 2−40.

Deployment: Becoming widespread — the default choice today for an AES-based MAC.
Included in IPsec, [186].

Implementation:

Public analysis:

Known weakness:

Comments: Security fails completely (all subkeys are revealed) if the result of encrypting
the all zeroes string under the CMAC secret key is revealed. Handschuh and Preneel, in
the full version of [71], note that the encryption of the all zeroes string is sometimes used
in the banking industry to check that a secret key has been correctly shared. Iwata [92]
has pointed out a much more serious problems, namely that having such a key check
value is also devastating for CBC-MAC without final encryption (as allowed by ISO
standards).

54

Part III

Asymmetric Primitives

55

Chapter 12

Mathematical Background

Below we give a brief overview of the mathematics behind asymmetric techniques, a more
extensive discussion can be found in [156].

Asymmetric schemes are based on the assumed intractability of some mathematical problem—
one hopes that “breaking” the scheme is essentially as hard as solving a (presumed) difficult
mathematical problem. This somewhat contrasts symmetric schemes. Though mathematical
theory exists for building-blocks of symmetric primitives, the construction of e.g. a block ci-
pher is still more of an art than a science, relying on experience from known attacks, trying to
put together building-blocks so as to avoid them. Are asymmetric schemes more secure? This
is an often debated question, there is really nothing that guarantees this, since the security
at the very bottom still rests on an unproven assumption. Nevertheless, there is a certain
attractiveness in basing the security on some quite well-studied mathematical problem that
nobody (often despite large efforts) has been able to solve.

12.1 Provable Security

In some cases, one can say a little more than just that the security is “based” on a mathemat-
ical problem. It is sometimes possible to formally prove that the security of an asymmetric
scheme is “as high as” the difficulty of solving an underlying mathematical problem. What
does this mean? Assume that the mathematical problem is denoted M (this may be the
problem of integer factorization) and that the asymmetric scheme is denoted A. A proof
could for instance (intuitively, and simplified) say that:

if scheme A can be broken with computational effort T , then problem instances
of M can be solved with computational effort f(T),

for some function f . Now, if f(T) is less than the presumed (state-of-the-art) difficulty of
solving instances of M , this would mean that an attack on A would be an (seemingly unlikely,
or at least unexpected) break-through in computational theory, which gives some confidence
in A’s security. We here have what we in computational complexity theory call a reduction
from solving M to breaking A. Things are, however, slightly more complex and there are two
issues we would like to point out.

First, the statement of the exemplified reduction above is made in the so-called standard
model. That is, no further assumptions are made/needed, the statement/security proof is
self-contained. In practice, such proofs may be difficult to find. There have therefore been
proposed alternative proof models to the standard model. We here mention two.

57

58

The Random Oracle Model (ROM): In this model, some component of the asymmetric
primitive, often a hash function, in assumed to behave precisely as a completely random
function; a random oracle.

The Generic Group Model: In this model, one assumes that the group in which the arith-
metic of the asymmetric scheme is carried out has no “exploitable” properties. E.g. the
elements of the group can only be treated as abstract objects, on which one can perform
arithmetic, but one cannot exploit things such as representation of group elements, etc.
Some elliptic curve schemes can be proven secure in this model.

Either of these assumptions clearly makes the proof weaker in the sense that it then rests on
even more unproven assumptions. Moreover, a main question is whether these models have
anything to do with reality. In some cases they at least do not appear unreasonable, in other
cases, simple counterexamples can be given, showing that these properties do not hold. In
particular, concerning ROM, it is known that there are (contrived, but still) protocols that are
secure when implemented with a “real random oracle”, yet they become insecure no matter
what concrete hash function one uses, [34]. Another way of reasoning is that a proof in any of
these extended models at least is an indication of some soundness of the scheme. We will not
debate this issue in more depth, we only remark that clearly, a proof in the standard model
would be qualitatively preferred.

Besides qualitative properties of the proofs, there is also a second, quantitative aspect. In
the example above, it was stated that “If scheme A can be broken with computational effort
T , then problem M can be solved with computational effort f(T)”. An important question is
how f(T) grows as a function of T . This is usually referred to as the tightness of the reduction
from M to A. We prefer a function f which does not grow too fast, say e.g. f(T) = T 2, or
even linearly; f(T) = 7T . Why is this? First of all, if f grew too fast, f(T) might be larger
than the state-of-the-art method to solve M , and the proof would say nothing1. But one can
make another, qualitatively more accurate interpretation of the reduction as

A is at most a little easier to break than problem M is to solve.

The amount of “little easier” is what is determined by f , and hence by the tightness of the
reduction. The tighter the reduction, the stronger the confidence in the security of A. We
will informally in the sequel just refer to reductions as tight or loose. Exact details can be
found in [156], or referenced papers.

Finally, we note that sometimes, the problem M could also be the problem of breaking
a(nother) cryptosystem, i.e. one then shows that A is essentially as secure as M .

A discussion on some existing misconceptions about these aspects of provable security can
be found in [108].

12.2 Choice of Primitive

The primitives in this report (and their security proofs, where such exist) are based on re-
ductions from the RSA/factorization problem or from the discrete logarithm problem in a
suitable group. To briefly recapitulate, the factoring assumption (for our purposes) states
that given N = pq, for primes p, q of roughly equal size, it is “hard” to find the individual

1We have cheated by suppressing the fact that the size of the problem instances of M (which determines
complexity of M) typically depends on the key size, n, of A.

59

factors p, q. The (possibly strictly) stronger RSA assumption states that it is hard to invert
the RSA function xe mod N , e ≥ 3. Finally, the discrete logarithm assumption states that
given gx (in a suitable group), it is “hard” to find x. A number of additional options and
considerations also arise when selecting asymmetric primitives.

For factoring-based schemes, there are two main choices. First, the basic primitive: RSA
or Rabin. Rabin, which is basically RSA with fixed exponent e = 2 is equivalent to factoring,
but general RSA is not known to be. This can be viewed as an advantage for Rabin, but it
also implies that being able to break confidentiality (or forge signatures) of one message is
equivalent to finding the secret key.

For discrete-log based schemes, there are two main choices. First, the choice of group
(either the multiplicative group modulo a prime or an elliptic curve) and whether the group
is part of the public key or is it common to all users of the scheme. Secondly, the choice of
the actual scheme where different security proofs are known for different schemes, more on
this below. Some DLOG based schemes actually rely on the Computational Diffie-Hellman
assumption (CDH): given gx, gy, it is “hard” to find gxy, which is no harder than computing
discrete logarithms. Yet other schemes rely on the (possibly strictly) stronger Decisional
Diffie-Hellman assumption (DDH): given gx, gy, gz, it is “hard” to tell if z = xy or not. Some
relations between the hardness of these problems are studied in [126, 127, 128].

12.2.1 Other types of Primitives

Pairing based schemes (based on variations of the DLOG problem, e.g. groups where there
is an assumed “gap” between CDH and DDH), have some special features/advantages (e.g.
possibility of “certificate-less”, identity based cryptography) and could also be considered.
No such scheme is however included due to lack of deployment and/or maturity. In particu-
lar, recommendations for complete sets of parameters, giving a certain “symmetric key-size
equivalence” is still somewhat difficult to make with sufficient assurance/confidence.

There are also some proposed schemes, whose security depend on the difficulty of certain
lattice problems, e.g. NTRU, [77]. NTRU provides advantages in terms of performance, but
similar caveats regarding parameter choices as for pairing-based schemes apply.

Common to both the pairing based schemes and NTRU is also that there is yet no wide-
spread deployment and standardization is only just finishing (e.g. IEEE P1363.1).

12.3 Non-cryptographic Attacks

As with most public key schemes, various side-channel attacks may need to be considered,
depending on the deployment environment, see e.g. [156].

60

Chapter 13

Public-key Encryption

13.1 Overview

Somewhat simplified, an asymmetric encryption scheme consist of three algorithms (G, E,D).
Here, G is the key generation algorithm that generates private/public key pairs (e, d). Any-
body knowing e can encrypt messages c = Ee(m) so that only the party knowing the corre-
sponding d can retrieve m = Dd(c). Since no deterministic, public key scheme can be secure
in a strong sense, in practice the situation is a bit more complex, requiring random padding
of messages, etc.

A number of options and considerations arise when selecting asymmetric encryption prim-
itive. As usual, a main choice is whether to select a factoring based or a DLOG based schemes.
While other primitives are also possible, see Section 12.2.1 above, for the time being only these
two types are treated here.

For factoring-based schemes, there are two main choices. First, the basic primitive: RSA
or Rabin. Besides what we have already discussed, Rabin with e = 2 is faster than RSA
with e ≥ 3, but Rabin needs some redundancy to be sure that the decrypted message is the
cleartext. The current revision of this report does not include any Rabin based scheme due to
the lack of wide-spread deployment. Next, one needs to select a padding scheme. For RSA,
PKCS#1v1.5 has no security proof based on a reduction to a widely studied problem. OAEP,
included in the new PKCS#1v2.1 does, but relies on the ROM and the reduction of the proof
is loose.

The present revision of the report does not include any general purpose DLOG based
encryption scheme, mainly due to lack of deployment.

13.1.1 Security Notions

A number of security notions have been proposed for asymmetric encryption schemes. Today,
a strong and probably the most widely accepted measure is that of indistinguishability under
adaptive chosen ciphertext attack. Informally, the attacker first gets access to a decryption
oracle, which decrypts chosen ciphertexts on request. Next, the attacker gets a challenge: a
pair of messages, and a value which is the encryption of one of them, with the task of telling
which message it corresponds to. To this end, the attacker may issue additional decryption
queries (except on the challenge ciphertext), and is considered successful if it can decide which
message it got with non-trivial probability (slightly better than 1/2). This notion of security
is abbreviated IND-CCA2, and unless otherwise noted, is what we below mean by “secure”.

61

62

Again, for a more extensive discussion of the security of asymmetric schemes, we refer to
the NESSIE evaluation report, [156].

13.1.2 Consideration: Hybrid Encryption

The amount of data that can be efficiently protected by the public key techniques below
is rather limited, and it is usually a good idea to use hybrid encryption where a key is
transported by public key means, and said key is then used with symmetric techniques to
protect the actual data. Special public key based key encapsulation methods (KEMs) have
been defined for this purpose, and they generally offer better (tighter) security proofs than the
more general-purpose PK techniques above, see Chapter 16. There are also data encapsulation
methods (DEMs) which provide an “envelope” for more arbitrary data. When implementing
hybrid encryption, the considerations discussed in Section 8.4.4 apply.

13.2 RSA/Factoring Based

13.2.1 RSA PKCS#1 v1.5

Definition: RFC 3447, [95] (see also [164]).

Parameters: integer N , product of primes p, q, encryption exponent e, decryption exponent
d. N, e are public.

Security: Relies on the intractability of the RSA problem (and thus integer factoring), but
security may be less.

Deployment: Widespread (e.g. (W)TLS, S/MIME).

Implementation:

Public analysis: Cryptrec [46], papers such as those listed in “known weakness” below.

Known weakness: Bad choices of p, q exist but are (w.h.p.) avoided by random choices
for p, q of roughly the same size. Small e may open up to attacks on related messages,
[42, 43, 78] (e.g. similar messages, re-using same random pads). Implementations that
allow extensive adaptive chosen ciphertext attacks (about one million messages for a
1024-bit key), reporting back decryption errors, can be exploited to recover messages,
[24].

Comments: Due to lack of security proof and the known vulnerabilities, we recommend
whenever possible to use RSA-OAEP, or preferably, hybrid encryption based on RSA-
KEM. If used, we recommend |N | ≥ 1024 for legacy systems and |N | ≥ 2432 for new
systems. We recommend, if possible, to use large, random e, and/or to restrict use to
protection of short, random messages. We recommend not to use the same keys for
encryption and signatures. Multi-prime options, using more than two primes exists, are
defined in [164] and key-sizes/number of factors are in this case analyzed in [114].

63

13.2.2 RSA-OAEP

Definition: ISO/IEC 18033-2, [88] (see also [164, 95]).

Parameters: as for PKCS#1v1.5, plus a hash function and a mask generating function
(MGF).

Security: provably as secure as RSA inversion in the ROM, but with a loose reduction, [59].

Deployment: unclear, though included in several other standards, such as IEEE Std 1363,
S/MIME, etc.

Implementation:

Public analysis: NESSIE [156], Cryptrec [46], security proof [59] (correction of [17]).

Known weakness: Bad choices of p, q exists but are (w.h.p.) avoided by random choices for
p, q of roughly the same size. Implementations must not enable attackers to distinguish
between error conditions arising during the decoding process, since it may open up
efficient chosen ciphertext attacks, [123].

Comments: If used, we recommend |N | ≥ 1024 for legacy systems and |N | ≥ 2432 for new
systems. In addition we recommend to use the SHA-family of hash functions rather
than MD2, MD5 (part of the PKCS#1 specification). Pending investigation of the
exact impacts of recent progress in cryptanalysis of SHA-1 (see Section 10.6), somewhat
cautious use of SHA-1 may also be advisable. Due to the tighter security proof and the
simpler implementation, we recommend to consider RSA-KEM together with hybrid
encryption as an alternative to OAEP, see Chapter 16.

Discussion

This is the new RSA PKCS#1v2.0, included also in e.g. ISO/IEC 18033-2. Security is related,
in the random oracle model, to the “RSA problem” with a very loose reduction, [59]. This
is because of the quadratic-time cost of the reduction from the partial-domain RSA problem
and a success probability lost from the RSA problem.

From an efficiency point of view, encryption and decryption are very similar to the plain
RSA cryptosystem, except two more hashings. The advantage with respect to RSA-KEM (see
Section 16.2.1) is the size of the produced ciphertexts, which, in this case, is just an element
in Z∗

N .
Suggestion to consider for future standards development: OAEP 3-round. Instead of a

2-round Feistel network, one can make a 3-round construction. This improves the reduction,
since RSA-OAEP-3R directly reduce from the “RSA problem” (still with a quadratic cost).
Furthermore, bandwidth can be improved since redundancy (the zeroes in OAEP) is no longer
required.

13.3 ElGamal/Discrete log based

We do not present any general purpose DLOG based schemes for short messages. However,
the document does present a so-called hybrid scheme, namely ECIES. This is obtained by

64

applying the ECIES KEM from Chapter 16 and then applying a suitable form of symmetric
key based authenticated encryption (i.e. a DEM).

Chapter 14

Signatures

14.1 Overview

A signature scheme is usually defined as a triplet of algorithms (K, S, V), where K is the
Key generation algorithm, S is the Signing algorithm and V is the Verification algorithm. K
generates pairs (s, v) of keys for the Signing/Verification algorithm. Only the party knowing
s is able to generate a valid signature on m, σ(m), but using V and the corresponding key v
(assumed to be public information), anybody can efficiently decide if a given (m,σ(m)) pair
is valid. Note that some schemes, e.g. Identity based schemes, also specify a fourth function,
P , that generates parameters.

To meet security requirements (more on this below) and to allow signing of more or
less arbitrary long messages, a signature scheme requires a hash function, so that the sign-
ing/verification algorithms operate on a fixed-size hash of the message. The combination of
signature algorithm and hash function is called a signature suite. As discussed earlier, the hash
output should be twice the “security level” (in bits). In principle, any secure hash/signature
combination could be used. However, some issues should be brought to attention. For DSS, it
does not make sense to use e.g. the MD5 hash algorithm, since DSS by definition only allows
the SHA-family. Even if no security issue can be seen, it would create a completely new
“DSS”, which increases complexity and reduces interoperability. Secondly, a too liberal use
of different hash functions may open up so-called bidding-down attacks, where the security
corresponds to the weakest available hash function. In particular, it is important to tie the
signature value to the hash function used in creating it, see [99].

Some signature schemes enable the whole message, or part of it, to be recovered from
the signature. These schemes can be useful in constrained environments because only the
non-recoverable part of the message need be stored or transmitted with the signature.

As for asymmetric encryption, main choices are whether to use factoring or DLOG based
schemes (in the latter case also which group) and what security model/proof (if any) one
finds attractive.

14.1.1 Security Notions

The today most widely used security notion for signatures is similar to that for MACs, and is
called resistance against existential forgery under adaptive chosen message attack. Informally,
this means that the attacker is allowed to have messages of his own choosing signed by a
“signing oracle”, after which the attacker is to provide a single valid (m,σ(m))-pair that he

65

66

has not seen before. Below, unless otherwise noted, “secure” is used in this sense. Again, for
a more extensive discussion of the security of asymmetric schemes, we refer to [156].

14.2 RSA/Factoring Based

14.2.1 RSA PKCS#1 v1.5

Definition: RFC 3447, [95] (see also [164]).

Parameters: integer N , product of primes p, q, a signing exponent d, verification exponent
e where N, e are public, and a hash function.

Security: Relies on the intractability of the RSA problem (and thus integer factoring), but
security may be less.

Deployment: Widespread (e.g. (W)TLS, S/MIME).

Implementation:

Public analysis: Cryptrec [46].

Known weakness: Bad choices of p, q exists but are (w.h.p.) avoided by random choices
for p, q of roughly the same size. d must not be small.

Comments: We recommend to use at least 160-bit hash functions and |N | ≥ 1024 for legacy
systems, or for new deployments we recommend 224-bit hashes and |N | ≥ 2432. A
public exponent of e > 65536 is recommended, smaller e may be used if performance is
critical. However, due to the lack of security proof, we recommend whenever possible
to use RSA PSS instead, there is no advantage in using v1.5. We recommend not to use
the same keys for encryption and signatures, nor using the same key with both RSA
PSS and v1.5.

As already discussed in Chapter 10, we recommend to phase-out the use of the MD5
hash function and SHA-1 should be avoided in new deployments.

14.2.2 RSA-PSS

Definition: RFC 3447, [95] (see also [164]).

Parameters: as for v1.5 plus a mask generating function (MGF).

Security: Provably as secure as the RSA problem in the ROM (tight reduction) [94].

Deployment: Proposed for inclusion in standards (e.g. IEEE Std 1363), but deployment/use
is unclear.

Implementation:

Public analysis: NESSIE and Cryptrec reports [156, 46], several papers, e.g. [94, 44].

Known weakness: same as for v1.5.

67

Comments: Recommended alternative to v1.5, but we recommend not to use the same
key. We recommend to use at least 160-bit hash functions and |N | ≥ 1024 for legacy
systems, or for new deployments we recommend 224-bit hashes and |N | ≥ 2432. A public
exponent of e > 65536 is recommended, though small e may be used if performance is
critical. We recommend against the use of the MD5 hash function. RSA PSS-R, giving
message recovery, is specified in ISO/IEC 9796-2.

As already discussed in Chapter 10, we recommend to phase-out the use of the MD5
hash function and SHA-1 should be avoided in new deployments.

14.3 ElGamal/Discrete Log Based

14.3.1 DSA

Definition: FIPS PUB 186-2 (part of DSS), [142].

Parameters: p, an L = 1024 bit prime defining a prime field, and q, a 160-bit prime divisor
of p− 1 defining a cyclic subgroup. Parameters can be generated according to method
described in standard the [142]. For future deployments we recommend a p with at least
L = 2432 with has a l = 224-bit prime q dividing p− 1.

Security: for proper choice of parameters, the best known attack has roughly the same
complexity as that of factoring L-bit numbers, or, 2l/2, whichever is smaller.

Deployment: Widespread. (Included in numerous standards, e.g. IKE, (W)TLS, IEEE Std
1363, ISO/IEC 9796-3, etc.)

Implementation: Test vectors available in [142].

Public analysis: several papers, e.g. [153, 194, 195] (details below), Cryptrec [46].

Known weakness: sensitive to “misuse”, e.g. predictable nonces [153], malicious parameter
generation [194], but easily avoided. An unpublished attack exploiting “skewness” of
the distribution of the random number generator from FIPS 186 claims a workfactor of
264 and requires 222 known signatures when (L, l) = (1024, 160). A remedy is suggested
in FIPS 186-2.

Comments: FIPS 186-2 defines the Digital Signature Standards (DSS) which specifies both
the signature algorithms as well as the use of the SHA-1 hash function. For inter-
operability reasons, we do not recommend the use of DSA with other hash functions.
FIPS 186-3 will specify larger keys and hashes. There exists variants on DSA, e.g.
G(erman)DSA, K(orean)DSA, etc. While we see no security problems with these, we
recommend the use of DSA to limit the number of options.

We recommend to verify the correctness of parameters to mitigate attacks such as those
mentioned above. Even if the parameters have been already been “certified”, this gives
some extra protection. However, it has been shown that the method to generate a
random curve (or rather the one to prove that a curve was generated at random) is
flawed [195].

As already discussed in Chapter 10, SHA-1 should be avoided in new deployments.

68

14.3.2 ECDSA

Definition: ANSI X9.62, [8] (part of DSS [142] and Suite-B [157], also in SECG, IKE,
(W)TLS, IEEE Std 1363, ISO 14888-3, 15946-2, etc.).

Parameters: a subgroup over an elliptic curve defined over a prime or binary field. The
standard [142] defines 4 curves over prime fields and 8 over binary fields, the curves
corresponding roughly to L = 160, 256, 384, and 512-bit keys. A method to generate
random curves is also specified (taken from [8]).

Security: for proper choice of parameters and L-bit keys, best known attack has complexity
about 2L/2. In the generic group model, better attacks can be excluded, see [32].
However, the relevance of the generic group model for ECDSA has been questioned,
[189] (see also “duplicate signatures” below).

Deployment: Widespread.

Implementation: Test vectors and implementation hints available in [142].

Public analysis: As for DSA, plus the NESSIE and Cryptrec reports [156, 46] the papers
[32, 154].

Known weakness: As for DSA, in particular the possibility of badly generated curves over
binary fields [195]. We recommend to avoid bad parameters choices by either using the
specified curves in [142], or, to use random curves according to [8].

Comments: As for DSA. Note that also SHA-256, 384 and 512 may be required to give
matching security. The use of Koblitz curves over binary fields requires slightly larger
keys (the best attacks are for curves over the field F2m about

√
2m times faster, usually

not critical). Some general concerns exist about possible future attacks on curves of
“special form”, or over “special fields” e.g. [205]. As a first choice, we recommend curves
over prime fields. Existence of duplicate signatures: note that each message has two
valid signatures, if (r, s) is a valid signature, then so is (r,−s), which in a sense means
that DSA EC groups cannot be considered “generic”. Finally, an “interoperability
chain” for various ECDSA standards is noted in [93]: FIPS 186-2 < ANSI X9.62 <
IEEE Std 1363-2000 < ISO 14888-3, i.e. an implementation according to FIPS 186-2 is
also compliant with ANSI X9.62, etc, but the converse may not hold. (Note however
that X9.62 and 14888-3 have been revised since [93] was written and it is therefore to
be confirmed if this still holds.)

For legacy systems we recommend using a curve with a prime order subgroup with at
least 160 bits, however for new deployments we recommend choosing groups with prime
order of size at least 224-bits.

We recommend to verify the correctness of parameters to mitigate attacks such as those
mentioned above. Even if the parameters have been already been “certified”, this gives
some extra protection.

As already discussed in Chapter 10, SHA-1 should be avoided in new deployments.

Chapter 15

Public Key Authentication and
Identification

15.1 Overview

In this primitive category we find protocols between a prover and a verifier. The purpose of
these protocols is for the prover to be able to convince the verifier that “he is who he claims
to be”. First, the protocol should be complete: if the prover indeed is who he claims to be,
he should be able to convince any verifier (who wishes to be convinced) that this is the case.
Secondly, the protocol should be sound : nobody but the real prover should be able convince
anybody of this fact. Put differently, “convincing” here means ability to prove knowledge of
some secret information, that is in some correspondence to some publicly available information
such as an identity/public key, available to the verifier.

At present, the only included scheme is the GQ-scheme by Guillou and Quisquater, which
is a zero knowledge identification protocol. Intuitively, this means that no other information,
except the fact that the other party is who he/she claims to be, is revealed. In particular, no
information about the secret key is leaked.

Note that with any identification protocol, the identity/authenticity of the other party is
only assured at the time of protocol execution. Thus, if granting access or service is based
on success of the protocol, a trusted path must also be in place, or be cryptographically
established by tying together the identification with key agreement and integrity protection.

Again, for a more extensive discussion of the security of asymmetric identification schemes,
we refer to [156].

15.2 GQ

Definition: ISO/IEC 9798-5, [85].

Parameters:

system-wide:

• public: an RSA public key, (N, e), where e is prime
• secret (known only to “system authority”): a secret RSA exponent, d (corre-

sponding to e)

69

70

user-specific:

• public key: an integer G

• secret key: integer Q (such that G ≡ Q−e (mod N))

security parameter: t, the number of repetitions

Security: asymptotically, if te < A logB n (for some constants A,B), the scheme is (perfect)
zero knowledge and, if a certain (strengthened) RSA assumption holds, the forgery
success of an attacker is bounded by e−t, see [33, 66, 67, 16].

Deployment: unclear

Implementation:

Public analysis: NESSIE, [156].

Known weakness: as with other known ZK identification protocols, implementations in
environments where it is possible to “reset” the prover (e.g. removal of power from
smart-card) may fail to provide security.

Comments: The scheme can be made identity based by letting G = f(ID), where ID
encodes some user-identity, and f is a suitable function. A usual recommendation is to
use t = 1 so that the choice of e directly determines the security level. Since factorization
of N is unknown, attacks based on fault analysis of CRT implementations in end-user
devices can be excluded. Also, some side-channel attacks can be excluded due to the
use of public exponents, [156].

Chapter 16

Key Encapsulation Mechanisms

16.1 Overview

The modern method for using public key encryption is by so-called hybrid schemes. These
combine a public key method for transmitting a symmetric key (a key encapsulation mecha-
nism or KEM) with a method for encrypting the payload via a symmetric key based mech-
anism (a data encapsulation mechanism or DEM). The KEM-DEM methodology allows for
highly efficient schemes, and a modular approach to new scheme development. The standard
ISO/IEC 18033-2 [88] specifies complete algorithm suites for hybrid encryption.

The security notion used for the asymmetric primitive in a KEM is basically the same
as for general public key encryption, though considering that the protected value is to be
used as a key, a secure key derivation function is also needed. Similarly, for Diffie-Hellman
key-agreement variants, security means that observing the exchanged public values should
reveal no useful information about the agreed secret.

A central question in cryptography is the relation between the Diffie-Hellman problem
(CDH), its variants (e.g. DDH), and the DLOG problem. Some partial results, stating as-
sumptions/conditions under which equivalence holds/does not hold, can be found in e.g.
[126, 127, 128].

As with most public key schemes, various attacks based on timing analysis, power analysis,
or fault analysis may need to be considered, depending on the deployment environment, see
e.g. [156].

16.2 Factoring Based

16.2.1 RSA-KEM

Definition: ISO/IEC 18033-2, [88].

Parameters: same as for the basic RSA scheme (N, e, d), plus a secure key derivation func-
tion (KDF).

Security: provably as secure as RSA inversion, very tight reduction with KDF modeled in
the ROM, see e.g. [182].

Deployment: unclear

71

72

Implementation:

Public analysis: NESSIE [156]. The paper [79] shows that (asymptotically) any block of
O(log log N) bits is as secure as whole message (loose reduction).

Known weakness: same caveats as for general RSA key generation, easily avoided.

Comments: We and |N | ≥ 1024 for legacy systems, or for new deployments we recommend
|N | ≥ 2432. A public exponent of e > 65536 is recommended, though smaller e may
be used if performance is critical. Due to the homomorphic properties of RSA, security
requirements on the KDF may be higher than some other schemes. We recommend
following the ISO 18033-2 specification for KDFs. RSA-KEM is an improvement of
RSA-REACT. Encryption can be quite efficient, while decryption requires an inversion
of the RSA function. As consequence the scheme remains very similar to the plain RSA
cryptosystem (from an efficiency point of view).

16.3 DLOG Based

16.3.1 ECIES-KEM

Definition: ISO/IEC 18033-2, [88] (Also see ANSI X9.63 [9] and SECG [172])

Parameters: a cyclic elliptic curve group of size q, and a KDF.

Security: modeling the KDF in the ROM, the scheme is provably as secure as the gap-DDH
problem. If one models the group as a generic group then it is secure on the basis of
the security of the hash function. See [48] for a full discussion.

Deployment: unclear

Implementation:

Public analysis:

Known weakness: There are some legacy issues with earlier standards with respect to
choices of the associated DEM and with issues related to “benign” malleability. The
first of these is easily overcome, whilst the second is a matter of ongoing discussion as
to whether it is a security weakness or a feature.

Comments: Normal security considerations for parameter choice applies. We recommend to
use a suitable elliptic curve with a group order divisible by a prime q of at least 160-bits
for legacy systems, or 224-bits for new deployments.

16.3.2 PSEC-KEM

Definition: ISO/IEC 18033-2, [88].

Parameters: a cyclic group (subgroup of a finite field or elliptic curve) of size q, and a KDF.

Security: modeling the KDF in the ROM, the scheme is provably as secure as the CDH
problem with a tight reduction, see [182].

73

Deployment: unclear

Implementation:

Public analysis: NESSIE [156].

Known weakness:

Comments: Normal security considerations for parameter choice applies. We recommend
to use prime fields of at least 1024 (resp. 2432) bits or a suitable elliptic curve, in both
cases with at least 160 (resp. 224) bit q for legacy (resp. new) systems. Binary fields
may be used if performance is an issue.

16.3.3 ACE-KEM

Definition: ISO/IEC 18033-2, [88].

Parameters: as for PSEC-KEM, plus a hash function

Security: under the assumption that the hash is 2nd preimage resistant and that the KDF
has certain pseudorandom properties, the scheme is provably as secure as the DDH
problem with a tight reduction (i.e. in the standard model), see [45].

Deployment: unclear

Implementation:

Public analysis: NESSIE [156].

Known weakness:

Comments: Normal security considerations for parameter choice applies. We recommend
to use prime fields of size at least 1024 (resp. 2432) bits or a suitable elliptic curve, in
both cases with at least 160 (resp. 224) bit q and hash function for legacy (resp. new)
systems. Binary fields may be used if performance is an issue. Different security proofs
under different assumptions are known, see [156] for an overview. In particular it has
been shown in [45] that ACE-KEM is at least as secure as ECIES-KEM (which is also
included in ISO 18033-2). Implementations should not reveal cause of decryption errors.
Doing so does not obviously open up for attacks, but the security proof no longer holds.

74

Chapter 17

Key Agreement and Key
Distribution

17.1 Overview

Many protocols make use of key agreement/transport sub-protocols. These come in essentially
three variants. Either they are symmetric key based (such as Kerberos), or they engage in
a simple public key key-transport mechanism (akin to RSA-KEM from Chapter 16 and used
in early deployed versions of SSL), or they use a forward-secure key agreement scheme based
(usually) on the Diffie–Hellman protocol. The use of Diffie–Hellman based key agreement in
SSL/TLS implementations is becoming more widespread due to security and legal concerns,
it is often the default setting for modern browser/web-server combinations.

Some protocols/applications allow for DH to be used without authentication, often referred
to as opportunistic mode. Note that without authentication, DH is totally vulnerable to an
active man-in-the-middle attack: Alice and Bob think they have exchanged a key, but in
reality there has been created one key between Alice and the attacker, and one key between
the attacker and Bob. Consequently, the attacker can eavesdrop on all communication, acting
as relay between Alice and Bob. Therefore, DH may fail to provide any security when active
attacks are possible. Thus DH is often used in combination with some form of authentication
mechanism, often these are digital signatures (in the case of SSL/TLS) althought this needs
to be done carefully due to possible unknown-key-share attacks. Variants of DH exists (such
as MQV, HMQV, MTI etc) which combine the authentication into the key derivation, these
variants provide implicit authentication and are often more efficient than a method which
combines DH with a standard signature algorithm.

While DH is often a quite heavy-weight protocol, it has one advantage: perfect forward
secrecy. This means that breaking one DH-created key still does not help an attacker breaking
other DH-created keys.

DH According to the Internet Key Exchange (IKE)

Definition: RFC 2409, [72].

Parameters: The IKE protocol suggests four cyclic groups (subgroup of a finite field or
elliptic curve) of different sizes for key exchange. Later, 6 more prime field groups have

75

76

been added [107]. The choice of the original groups originates from the Oakley protocol
[160]. A secure PRF is also required.

Security: as claimed.

Deployment: Widely used to secure Internet connections.

Implementation: NIST PlutoPlus reference implementation for Linux [151].

Public analysis: The security of Oakley groups 3 and 4 are analyzed in [185] without finding
any practical attack or weaknesses, although their use is not recommended.

Known weakness: The Oakley groups 1, 2 and 3 are too small to provide adequate security.

Comments:

Bibliography

[1] 3GPP TS 35.202, Specification of the 3GPP confidentiality and integrity algorithms;
Document 2: Kasumi algorithm specification, available from http://www.3gpp.org/
ftp/Specs/html-info/35202.htm.

[2] 3GPP TS 35.203, Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 3: Implementors’ Test Data, available from http://www.3gpp.org/ftp/
Specs/html-info/35202.htm.

[3] 3GPP TS 35.204, Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 4: Design Conformance Test Data, available from http://www.3gpp.org/
ftp/Specs/html-info/35204.htm.

[4] 3GPP TR 33.908, 3G Security; General report on the design, specification and eval-
uation of 3GPP standard confidentiality and integrity algorithms, available from
http://www.3gpp.org/ftp/Specs/html-info/33908.htm.

[5] F. Almgren, G. Andersson, T. Granlund, L. Ivansson, and S. Ulfberg, How we Cracked
the Code Book Ciphers, Report, 2000. Available via answers.codebook.org

[6] E. Andreeva, C. Bouillaguet, P.-A. Fouque, J. J. Hoch, J. Kelsey, A. Shamir and S. Zim-
mer, Second Preimage Attacks on Dithered Hash Functions, Proceedings of Eurocrypt
2008, LNCS 4965, pp. 270–288, Springer-Verlag.

[7] ANSI X9.19-1996, Financial Institution Retail Message Authentication.

[8] ANSI X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm (ECDSA).

[9] ANSI X9.63, Public Key Cryptography for the Financial Services Industry: Key Agree-
ment and Key Transport Using Elliptic Curve Cryptography.

[10] The AES Lounge, http://www.iaik.tu-graz.ac.at/research/krypto/AES/index.
php.

[11] K. Aoki, Y. Kida, T. Shimoyama, H. Ueda, Subject: SNFS274, Announcement, 24 Jan
2006.

[12] F. Bahr, M. Boehm, J. Franke, T. Kleinjung, Subject: RSA200, Announcement, 9 May
2005.

[13] M. Bellare, New Proofs for NMAC and HMAC: Security Without Collision-Resistance,
Proceedings of Crypto 06, LNCS 4117, pp. 602–619, Springer-Verlag, 2006.

77

78

[14] M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authenti-
cation, Proceedings Crypto 96, LNCS 1109, Springer-Verlag, 1996. Full paper available
at http://www.cs.ucsd.edu/users/mihir/papers/hmac.html.

[15] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, A Concrete Treatment of Symmetric
Encryption: Analysis of DES Modes of Operation, Proceedings of 38th IEEE FOCS,
pp. 394–403, 1997.

[16] M. Bellare and A. Palacio, GQ and Schnorr identification schemes: Proofs of security
against impersonation under active and concurrent attacks, Proceedings of Crypto’02,
LNCS 2442, pp. 162–177, Springer-Verlag.

[17] M. Bellare and P. Rogaway, Optimal asymmetric encryption (how to encrypt with RSA),
Proceedings of Eurocrypt’94, LNCS 950, pp. 92–111, Springer-Verlag.

[18] S. Bellovin, Problem Areas for the IP Security Protocols, Proceedings of the 6th
Usenix Unix Security Symposium, pp. 1–16, 1996, available at www.research.att.com/˜
smb/papers/index.html

[19] D. Bernstein, Circuits for Integer Factorization: A Proposal, Manuscript, Nov. 2001.
Available via http://cr.yp.to/papers.html.

[20] E. Biham, O. Dunkelman, and N. Keller, A Related-Key Rectangle Attack on the Full
KASUMI, Proceedings of ASIACRYPT 2005, LNCS 3788, pp. 443–461, 2005.

[21] E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, Journal
of Cryptology, 4 (1991), 3–72.

[22] E. Biham and Y. Carmeli, Efficient Reconstruction of RC4 Keys from Internal States,
Proceedings of FSE 2008, LNCS 5086, 2008.

[23] J. Black, Authenticated encryption, In “Encyclopedia of Cryptography and Security”,
Springer-Verlag, 2005.

[24] D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA en-
cryption standard PKCS#1, Proceedings of Crypto’98, LNCS 1462, pp. 1–12, Springer-
Verlag.

[25] M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson, and M.
Wiener, Minimal Key Lengths for Symmetric Ciphers to Provide Adequate Commercial
Security, Report of ad hoc panel of cryptographers and computer scientists, Jan. 1996.
Available via http://www.crypto.com/papers/.

[26] The block cipher lounge, http://www2.mat.dtu.dk/people/Lars.R.Knudsen/bc.
html.

[27] The Blowfish page, http://www.schneier.com/blowfish.html.

[28] M. Blunden and A. Escott, Related Key Attacks on Reduced Round KASUMI, Pro-
ceedings of FSE 2001, LNCS 2355, pp. 277–285, Springer-Verlag.

79

[29] M. Bodén and S. Kowalski, Value based risk analysis: the key to successful commer-
cial security targets for the Telecom Industry, Proceedings of 2nd Common Criteria
Conference, 2002.

[30] G. Brassard, P. Hoyer, A. Tapp, Quantum cryptanalysis of hash and claw-free functions,
ACM SIGACT, 28:2, 1997, 14–19.

[31] J. R. T. Brazier, Possible NSA Decryption Capabilities, Manuscript 1999, available via
jya.com/nsa-study.htm

[32] D. R. L. Brown, Generic Groups, Collision Resistance, and ECDSA, available at
http://eprint.iacr.org/2002/026/.

[33] M. Burmester, An almost-constant round interactive zero-knowledge proof, Information
Processing Letters, 42:2, 81–87, 1992.

[34] R. Canetti, O. Goldreich, and S. Halevi, The Random Oracle Methodology, Revisited,
In Proceedings of 30th Annual ACM Symposium on the Theory of Computing, pp. 209–
218, May 1998, ACM.

[35] C. De Canniére and C. Rechberger, Finding SHA-1 Characteristics: General Results
and Applications, Proceedings of ASIACRYPT 2006, LNCS 4284, pp. 1–20, Springer-
Verlag.

[36] C. De Canniére and C. Rechberger, SHA-1 collisions: Partial meaningful at no extra
cost?, Presented at rump session of CRYPTO 2006.

[37] C. De Cannière and C. Rechberger, Finding SHA-1 Characteristics, NIST - Second
Cryptographic Hash Workshop, 2006.

[38] C. De Cannière, F. Mendel and C. Rechberger, Collisions for 70-Step SHA-1: On
the Full Cost of Collision Search, Proceedings of SAC 2007, LNCS 4876, pp. 56–73,
Springer-Verlag.

[39] C. De Cannière and C. Rechberger, Preimages for Reduced SHA-0 and SHA-1, Pro-
ceedings of CRYPTO 2008, LNCS 5157, pp. 179–202, Srpinger-Verlag.

[40] I. L. Chuang, N. Gershenfeld, and M. Kubinec, Experimental Implementation of Fast
Quantum Searching, Physical Review Letters, 80:15 (1998), 3408–3411.

[41] S. Contini and Y. L. Yin, Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions, Proceedings of ASIACRYPT 2006, LNCS 4284, pp. 37–
53, Springer-Verlag.

[42] D. Coppersmith, M. Franklin, J. Patarin and M. Reiter, Low-Exponent RSA with
Related Messages, Proceedings of Eurocrypt ’96, LNCS 1070, pp. 1–9, Springer-Verlag.

[43] J.-S. Coron, M. Joye, D. Naccache and P. Paillier, New Attacks on PKCS #1 v1.5
Encryption, Proceedings of Eurocrypt 2000, LNCS 1807, pp. 369–379, Springer-Verlag.

[44] J.-S. Coron, M. Joye, D. Naccache and P. Paillier, Universal Padding Schemes for RSA,
Proceedings of Crypto 02, LNCS 2442, pp. 226–241, Springer-Verlag.

80

[45] R. Cramer and V. Shoup, Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack, Cryptology ePrint Archive, Report
2001/108, 2001.

[46] Cryptrec report annual 2002, available at
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/c02e\ report2.pdf.

[47] M. Daum and S. Lucks, Attacking Hash Functions by Poisoned Messages, “The Story
of Alice and her Boss”, available at http://http://th.informatik.uni-mannheim.
de/People/lucks/HashCollisions/.

[48] A.W. Dent. Proofs of security for ECIES. Chapter III of Advances in Elliptic Curve
Cryptography, pp 41–46, Cambridge University Press, 2005.

[49] I. Devlin and A. Purvis, A fundamental evaluation of 80 bit keys employed by hard-
ware oriented stream ciphers, Workshop record of SHARCS 2006, www.ruhr-uni-
bochum.de/itsc/tanja/SHARCS/

[50] I. Devlin and A. Purvis, Assessing the Security of Key Length, Workshop record of
SASC 2007, sasc.crypto.rub.de/program.html

[51] distributed.net, Project RC5,
available via http://www.distributed.net/rc5/.

[52] ECRYPT NoE, Recent Collision Attacks on Hash Functions: ECRYPT Position Paper,
ECRYPT document STVL-ERICS-2-HASH STMT-1.1, Feb. 2005, available at http:
//www.ecrypt.eu.org/documents/STVL-ERICS-2-HASH\ STMT-1.1.pdf.

[53] ECRYPT NoE, AES Security Report, ECRYPT deliverable D.STVL.2, Jan 2006,
available at http://www.ecrypt.eu.org/documents/D.STVL.2-1.0.pdf.

[54] ECRYPT NoE, eHash home page, http://ehash.iaik.tugraz.at.

[55] ECRYPT NoE, eStream home page, http://www.ecrypt.eu.org/stream.

[56] EFF, Website of the electronic frontier foundation. http://www.eff.org/descracker.
html.

[57] ETSI TS 102 176, Electronic Signatures and Infrastructures (ESI); Algorithms and
Parameters for Secure Electronic Signatures, ETSI, Nov 2004.

[58] P.-A. Fouque, G. Leurent, P. Q. Nguyen, Full Key-Recovery Attacks on HMAC/NMAC-
MD4 and NMAC-MD5, Proceedings of Crypto 2007, 4622, pp. 13–30, Springer-Verlag.

[59] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, RSA-OAEP is secure under the
RSA assumption, Proceedings of Crypto’01, LNCS 2139, pp. 260–274, Springer-Verlag.

[60] C. Gaj et al., Fast Implementation and Fair Comparison of the Final Candidates for
Advanced Encryption Standard Using Field Programmable Gate Arrays, In CT-RSA
2001, LNCS 2020, pp. 84—99.

[61] C. Gehrmann and K. Nyberg, Security in Personal Area Networks, In C. Mitchell
(Ed.): Security for Mobility, IEE 2003.

81

[62] H. Gilbert and H. Handschuh. Security analysis of SHA-256 and sisters, Proceedings
of SAC 2003, LNCS 3006, pp. 175–193, Springer-Verlag.

[63] J. Gilmore (Ed.), Cracking DES: Secrets of Encryption Research, Wiretap Politics &
Chip Design, Electronic Frontier Foundation, O’Reilly & Associates, 1998.

[64] L. Granboulan, How to repair ESIGN, Proceedings of SCN ’02, also available at
http://eprint.iacr.org/2002/074, 2002.

[65] L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings
of the 28th ACM STOC, pp. 212–219, 1996.

[66] L. C. Guillou and J.-J. Quisquater, A “paradoxical” identity-based signature scheme
resulting from zero-knowledge, Proceedings of Crypto’88, LNCS 403, pp. 216–231,
Springer-Verlag, 1988.

[67] L. C. Guillou and J.-J. Quisquater, A practical Zero-Knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory, Proceedings of Euro-
crypt’88, LNCS 330, pp. 123–128, Springer-Verlag.

[68] S. Halevi and H. Krawczyk. Strengthening Digital Signatures via Randomized Hashing.
Proceedings of Crypto 2006, LNCS 4117, pp. 41–59, Springer-Verlag.

[69] I. Hamer and P. Cho, DES Cracking on the Transmogrifier 2a, In Ç. K. Koç and C. Paar
(Eds.), Cryptographic Hardware and Embedded Systems, 1st International Workshop,
CHES 1999 Proceedings, LNCS 1717, pp. 13–24. Springer-Verlag.

[70] H. Handschuh and B. Preneel, Minding your MAC algorithms, Draft 2004, Submitted
to ISB Journal.

[71] H. Handschuh and B. Preneel, Key-Recovery Attacks on Universal Hash Function based
MAC Algorithms, Proceedings of Crypto 2008, LNCS 5157, pp. 144–161, Springer-
Verlag.

[72] D. Harkins and D. Carrel, The Internet Key Exchange (IKE), RFC 2409, IETF.

[73] P. Hawkes, M. Paddon, and G. Rose, On corrective patterns for the SHA-2 family,
Cryptology ePrint Archive, Report 2004/207, August 2004. http:// eprint.iacr.org/

[74] Hash function lounge, paginas.terra.com.br/informatica/paulobarreto/hflounge.html

[75] Helion, Website: http://www.heliontech.com/.

[76] A. Hodjat and I. Verbauwhede, A 21.54 gbits/s fully pipelined AES processor on FPGA,
In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Ma-
chines.

[77] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A Ring-Based Public Key Cryp-
tosystem, In Proceedings of ANTS III, LNCS 1423, pp. 267–288, Springer-Verlag, 1998.

[78] J. H̊astad, Solving Simultaneous Modular Equations of Low Degree, SIAM J. of Com-
puting, 17, 336–341, 1988.

82

[79] J. H̊astad and M. Näslund, The security of all RSA and discrete log bits, J. ACM 51:2,
187–230 (2004).

[80] http://www.weizmann.ac.il/˜itsik/RC4/rc4.html

[81] http://burtle.burtle.net/bob/rand/isaac.html

[82] http://planeta.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

[83] S. Indesteege, F. Mendel, B. Preneel and C. Rechberger, Collisions and other Non-
Random Properties for Step-Reduced SHA-256, Proceedings of SAC 2008 (to appear).

[84] ISO/IEC 9797-1:1999, Information technology — Security techniques — Message Au-
thentication Codes (MACs) — Part 1: Mechanisms using a block cipher.

[85] ISO/IEC 9798-5:2004, Information technology — Security techniques — Entity authen-
tication — Part 5: Mechanisms using zero knowledge techniques.

[86] ISO/IEC 10116:2006, Information technology — Security techniques — Modes of oper-
ation for an n-bit block cipher.

[87] ISO/IEC 10118-3:2004, Information technology — Security techniques — Hash-
functions — Part 3: Dedicated hash-functions.

[88] ISO/IEC 18033-2:2006, Information technology — Security techniques — Encryption
algorithms — Part 2: Asymmetric Ciphers.

[89] ISO/IEC 18033-3:2005, Information technology — Security techniques — Encryption
algorithms — Part 3: Block ciphers.

[90] ISO/IEC 18033-4:2005, Information technology — Security techniques — Encryption
algorithms — Part 4: Stream ciphers.

[91] IEEE Std 1363-2000, Standard Specification for Public-Key Cryptography.

[92] T. Iwata. On the Impact of Key Check Value on CBC MACs. Seminar 09031 on
“Symmetric Cryptography”, Schloss Dagstuhl, January 2009.

[93] D. Johnson, A. Menezes, and S. Vanstone, The Elliptic Curve Digital Signature Algo-
rithm (ECDSA), Submission to NESSIE.

[94] J. Jonsson, Security proofs for the RSA-PSS signature schemes and its variants, avail-
able at http://eprint.iacr.org/2001/053/, 2001.

[95] J. Jonsson, B. Kaliski, Public-Key Cryptography Standards (PKCS) #1: RSA Cryptog-
raphy Specifications Version 2.1, RFC 3447, IETF.

[96] A. Joux, Multicollisions in iterated hash functions, application to cascaded construc-
tions, Proceedings of Crypto 04, LNCS 3152, pp. 306–316, Springer-Verlag, 2004.

[97] A. Joux and T. Peyrin, Hash functions and the (amplified) boomerang attack, ECRYPT
Hash Workshop, Barcelona, Spain, 2007.

83

[98] A. Joux, D. Naccache, E. Thoé, When e-th Roots Become Easier Than Factoring,
Proceedings of Asiacrypt 2007, LNCS 4883, pp. 13–28, Springer-Verlag.

[99] B. Kaliski, Hash Function Firewalls in Signature Schemes, RSA Conference 2002,
LNCS 2271, pp. 1–16, Springer-Verlag.

[100] B. Kaliski, TWIRL and RSA Key Size, Available via www.rsasecurity.com/rsalabs

[101] J. S. Kang, S. U. Shin, D. Hong, and O. Yi, Provable security of KASUMI and 3GPP
encryption mode f8, Proceedings of ASIACRYPT 2001, LNCS 2248, pp. 255–271,
Springer-Verlag.

[102] O. Kara and C. Manap, A New Class of Weak Keys for Blowfish, Proceedings of FSE
2007, LNCS 4593, pp. 167–180, Springer-Verlag.

[103] J. Kelsey and B. Schneier, Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work, Proceedings of EUROCRYPT 2005, LNCS 3494, pp. 474–490, Springer-
Verlag.

[104] J. Kelsey and T. Kohno, Herding Hash Functions and the Nostradamus Attack, Pro-
ceedings of EUROCRYPT 2006, LNCS 4004, pp. 183–200, Springer-Verlag.

[105] T. Kerins, E. Popovici, A. Daly and W. Marnane, Hardware encryption engines for
e-commerce, In Proceedings of Irish Signals and Systems Conference, ISSC 2002, pp.
89–94.

[106] J. Kim, A. Biryukov, B. Preneel, and S. Hong, On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1, Proceedings of SCN, LNCS 4116,
pp. 242–256, Springer-Verlag.

[107] T. Kivinen and M. Kojo, More Modular Exponential (MODP) Diffie-Hellman groups
for Internet Key Exchange (IKE) RFC 3526, IETF.

[108] N. Koblitz, A. J. Menezes, Another Look at “Provable Security”, Journal of Cryptology,
20:1 (2007), 3–27, Springer-Verlag.

[109] P. C. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems, Advances in Cryptography, Proceedings of CRYPTO 1996, LNCS 1109,
pp. 104–113, Springer-Verlag, 1996.

[110] P. C. Kocher, J. Jaffe, B. Jun, Differential Power Analysis, Advances in Cryptography,
Proceedings of CRYPTO 1999, LNCS 1666, pp. 388–397, Springer-Verlag, 1999.

[111] F. Koeune, G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, J.-P. David and J.-D. Legat,
A FPGA Implementation of the Linear Cryptanalysis, In 12th International Conference
on Field Programmable Logic and Applications (FPL 2002), Montpellier, France.

[112] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message Authenti-
cation, IETF RFC 2104, available at http://www.ietf.org/rfc/rfc2104.txt?number=2104

[113] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, A. Rupp, and M. Schimmler, How
to Break DES for e 8,980, Workshop record of SHARCS 2006, www.ruhr-uni-
bochum.de/itsc/tanja/SHARCS/

84

[114] A. K. Lenstra, Unbelievable security; matching AES security using public key systems,
Proceedings of Asiacrypt 2001, LNCS 2248, pp. 67–86, Springer-Verlag, 2001.

[115] A. K. Lenstra, Key Lengths, Chapter 114, of The Handbook of Information Security,
Wiley 2005.

[116] A. K. Lenstra, A. Shamir, J. Tomlinson, and E. Tromer, Analysis of Bernstein’s factor-
ization circuit, Proceedings of Asiacrypt 2002, LNCS 2501, pp. 1–26, Springer-Verlag,
2002.

[117] A. K. Lenstra and E. R. Verheul, Selecting Cryptographic Key Sizes, Journal of Cryp-
tology 14:4, 255–293, 2001.

[118] A. K. Lenstra and B. de Weger, On the Possibility of Constructing Meaningful Hash
Collisions for Public Keys, Proceedings of ACISP 2005, LNCS 3574, pp. 267–279,
Springer-Verlag, 2005.

[119] A. K. Lenstra, X. Wang, and B. de Weger, Colliding X.509 Certificates based on MD5-
collisions, http://www.win.tue.nl/˜bdeweger/CollidingCertificates/

[120] G. Leurent, Message Freedom in MD4 and MD5 Collisions: Application to APOP,
Proceedings of FSE 2007, LNCS 4593, pp. 309–328, Springer-Verlag.

[121] C. McDonald, P. Hawkes and J. Pieprzyk. SHA-1 collisions now 252.
Eurocrypt 2009 Rump session, http://eurocrypt2009rump.cr.yp.to/
837a0a8086fa6ca714249409ddfae43d.pdf.

[122] S. Maitra and G. Paul, New Form of Permutation Bias and Secret Key Leakage in
Keystream Bytes of RC4, Proceedings of FSE 2008, LNCS 5086, pp. 250–266, Springer-
Verlag, 2008.

[123] J. Manger, A chosen ciphertext attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as standardized in PKCS #1 v2.0, Proceedings of Crypto 2001,
LNCS 2139, pp. 230–238, Springer-Verlag.

[124] M. Matsui, Linear cryptanalysis method for DES cipher, Proceedings of EUROCRYPT
93, LNCS 765, pp. 386–397, Springer-Verlag.

[125] K. Matusiewicz, J. Pieprzyk, N. Pramstaller, C. Rechberger, and V. Rijmen, Analysis of
simplified variants of SHA-256, Proceedings of WEWoRC 2005, LNI P-74, pp. 123–134,
2005.

[126] U. Maurer, Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Com-
puting Discrete Logarithms, Proceedings of CRYPTO ’94, LNCS 839, pp. 271–281,
Springer-Verlag.

[127] U. Maurer and S. Wolf, Diffie-Hellman, Decision Diffie-Hellman, and Discrete Loga-
rithms, Proceedings of ISIT ’98, IEEE Information Theory Society, pp. 327, 1998.

[128] U. Maurer and S. Wolf, The Relationship Between Breaking the Diffie-Hellman Protocol
and Computing Discrete Logarithms, SIAM J. Comp., 28:5 (1999), 1689–1721.

85

[129] A. Maximov and T. Johansson, Fast Computation of Large Distributions and Its
Cryptographic Applications, Proceedings of Asiacrypt 2005, LNCS 3788, pp. 313–332,
Springer-Verlag, 2005.

[130] A. Maximov and D. Khovratovich, New State Recovery Attack on RC4, Proceedings of
Crypto 2008, LNCS 5157, pp. 297–316, Springer-Verlag.

[131] D. A. McGrew and S. R. Fluhrer, Attacks on Additive Encryption of Redundant Plain-
text and Implications on Internet Security, Proceedings of SAC 2000, LNCS 2012,
pp. 14–24, Springer-Verlag, 2001.

[132] McLoone et al., High Performance Single-Chip FPGA Rijndael Algorithm Implementa-
tions, In Workshop on Cryptographic Hardware and Embedded Systems — CHES 2001,
Paris, France, 2001, LNCS.

[133] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, Analysis of Step-Reduced
SHA-256, Proceedings of FSE 2006, LNCS 4047, pp. 126–143, Springer-Verlag.

[134] F. Mendel, N. Pramstaller and C. Rechberger, Improved Collision Attack on the Hash
Function Proposed at PKC’98, Proceedings of ICISC 2006, LNCS 4296, pp. 8–21,
Springer-Verlag, 2006.

[135] F. Mendel, C. Rechberger and V. Rijmen, Update on SHA-1, Presented at Rump
Session of CRYPTO 2007.

[136] F. Mendel, C. Rechberger, M. Schläffer and S.S. Thomsen. The Rebound Attack: Crypt-
analysis of Reduced Whirlpool and Grøstl, Proceedings of FSE 2006, LNCS 5665,
pp. 260–276, Springer-Verlag, 2006.

[137] A. Menezes, P. C. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

[138] C. J. Mitchell, K. G. Paterson, and A. Yau, Padding Oracle Attacks on the CBC-mode
encryption with random and secret IVs, Proceedings of Fast Software Encryption (FSE)
2005, LNCS 3557, pp. 308–329.

[139] C. J. Mitchell and V. Varadharajan, Modified forms of cipher block chaining, Computers
and Security 10, pp. 37–40, 1991.

[140] NIST, Data encryption standard (DES), FIPS PUB 46-3, available at
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[141] NIST, Secure hash standard, FIPS PUB 180-2, available at
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

[142] NIST, Digital Signature Standard (DSS), FIPS PUB 186-2, Available at
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

[143] NIST, Advanced Encryption Standard, FIPS PUB 197, available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[144] NIST, Recommendation for Block Cipher Modes of Operation, SP 800-38,
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

86

[145] NIST, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Au-
thentication, SP 800-38B, http://csrc.nist.gov/publications/nistpubs/800-38b/sp800-
38b.pdf

[146] NIST, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, SP 800-38D, http://csrc.nist.gov/publications/nistpubs/800-
38D/SP-800-38D.pdf

[147] NIST, Recommendation for Block Cipher Modes of Operation: The
CCM Mode for Authentication and Confidentiality, SP 800-38C,
http://csrc.nist.gov/publications/nistpubs/800-38c/sp800-38c.pdf

[148] NIST, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Ci-
pher, SP 800-67, http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf

[149] NIST, Recommendation for Key Management — Part 1: General SP
800-57, May 2006, http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-
revised2 Mar08-2007.pdf

[150] NIST, Cryptographic Algorithms and Key Sizes for Personal Identity Verification, April
2005, available via csrc.nist.gov/publications/nistpubs/800-78/sp800-78-final.pdf

[151] NIST, PlutoPlus: An IKE Reference Implementation for Linux, available at
http://ipsec-wit.antd.nist.gov/newipsecdoc/pluto.html

[152] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and E. Roback,
Report on the Development of the Advanced Encryption Standard (AES), available at
http://csrc.nist.gov/CryptoToolkit/aes/round2/r2report.pdf

[153] P. Q. Nguyen and I. Shparlinski, The insecurity of the digital signature algorithm with
partially known nonces, Journal of Cryptology, 15, 151–176, 2002. Also available at
ftp://ftp.ens.fr/pub/dmi/users/pnguyen/PubDSA.ps.gz.

[154] P. Q. Nguyen and I. Shparlinski, The insecurity of the elliptic curve digital signature
algorithm with partially known nonces, Design, Codes and Cryptography, 2002. Also
available at ftp://ftp.ens.fr/pub/dmi/users/pnguyen/PubECDSA.ps.gz.

[155] NESSIE consortium, Portfolio of recommended cryptographic primitives, Feb. 2003,
available via http://www.cryptonessie.org/

[156] NESSIE consortium, NESSIE Security report, available at
https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/D20-v2.pdf

[157] National Security Agency. NSA Suite B Cryptography. http://www.nsa.gov/ia/
programs/suiteb cryptography/index.shtml.

[158] K. Nyberg and J. Wallén, Improved Linear Distinguishers for SNOW 2.0, Proceedings
of FSE 2006, LNCS 4047, pp. 144–162, Springer-Verlag, 2006.

[159] P. C. van Oorschot and M. J. Wiener, Parallel Collision Search with Cryptanalytic
Applications, Journal of Cryptology 12:1 (1999), 1–28.

87

[160] H. Orman, The Oakley Key Determination Protocol RFC 2412, IETF.

[161] H. Orman and P. Hoffman, Determining Strengths For Public Keys Used For Exchanging
Symmetric Keys, IETF RFC 3766/BCP 86, April 2004.

[162] D. A. Osvik, A. Shamir, E. Tromer, Cache Attacks and Countermeasures: The Case of
AES, Proceedings of CT-RSA 2006, LNCS 3860, pp. 1–20, Springer, 2006.

[163] D. Page, Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel, Technical report CSTR-02-003, Department of Com-
puter Science, University of Bristol. June 2002. Available online at
http://www.cs.bris.ac.uk/Publications/pub master.jsp?id=1000625

[164] RSA Labs, PKCS# 1: RSA Cryptography Standard, available at
http://www.rsasecurity.com/rsalabs/node.asp?id=2125

[165] B. Preneel and P. C. van Oorschot, A key recovery attack on the ANSI
X9.19 retail MAC, Electronics Letters, 32:17 (1996), 1568–1569. Available at
http://www.scs.carleton.ca/˜paulv/papers/pubs.html

[166] C. Rechberger and V. Rijmen, On Authentication Using HMAC and Non-Random
Properties, Proceedings of Financial Cryptography 2007, LNCS 4886, pp. 119–133,
Springer-Verlag.

[167] C. Rechberger and V. Rijmen, New Results on NMAC/HMAC when Instantiated with
Popular Hash Functions, Journal of Universal Computer Science (JUCS), Special Issue
on Cryptography in Computer System Security, 14:3, 2008, 347–376.

[168] V. Rijmen, Cryptanalysis and design of iterated block ciphers, PhD thesis, October
1997.

[169] RIPEMD, http://www.esat.kuleuven.ac.be/˜bosselae/ripemd160.html

[170] R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321, available at
http://www.ietf.org/rfc/rfc1321.txt?number=1321

[171] RSA Labs, A Cost-Based Security Analysis of Symmetric and Asymmetric Key Lengths,
RSA Labs Bulletin #13, available at www.rsasecurity.com/rsalabs/

[172] SECG. Standards for Efficient Cryptography Group. SEC1: Elliptic Curve Cryptogra-
phy version 2.0, http://www.secg.org.

[173] Saggese et al., An FPGA-Based Performance Analysis of the Unrolling, Tiling, and
Pipelining of the AES Algorithm, In FPL 2003, LNCS 2778, pp. 292–302, Springer-
Verlag.

[174] Y. Sasaki and K. Aoki. Finding Preimages in Full MD5 Faster Than Exhaustive Search.
Proceedings of EuroCrypt 2009, LNCS 5479, pp. 134–152, Springer-Verlag.

[175] Y. Sasaki, L. Wang, K. Ohta, N. Kunihiro, Security of MD5 Challenge and Response:
Extension of APOP Password Recovery Attack, Proceedings of CT-RSA 2008, LNCS
4964, pp. 1–18, Springer-Verlag.

88

[176] D. Schmidt, On the Key Schedule of Blowfish, Manuscript 2005, available at
http://eprint.iacr.org/2005/063.

[177] B. Schneier, Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish),
Proceedings of FSE 1994, LNCS 1008, pp. 191–204, Springer-Verlag, 1994.

[178] A. Shamir, Factoring Large Numbers with the TWINKLE Device (Extended Abstract),
Manuscript, 2000.

[179] A. Shamir and E. Tromer, Factoring large numbers with the TWIRL device, Proceedings
of Crypto 2003, LNCS 2729, pp. 1–26, Springer-Verlag, 2003.

[180] R. Shipsey, How long. . . ?,
NESSIE Report NES/DOC/RHU/WP3/015/a, available via
https://www.cosic.esat.kuleuven.ac.be/nessie/reports/phase1/rhuwp3-015.pdf

[181] P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer, SIAM J. Sci. Statist. Comput., 26 (1997).

[182] V. Shoup, A proposal for an ISO standard for public key encryption, Cryptology ePrint
Archive, Report 2001/112, 2001. http://eprint.iacr.org/

[183] R. D. Silverman, A Cost-Based Security Analysis of Symmetric and Asymmetric Key
Lengths, RSA Laboratories Bulletin #13, April 2000.

[184] E. Skoudis and L. Zeltser, Malware: Fighting Malicious Code, Prentice Hall, 2003.

[185] N. P. Smart, How Secure are elliptic curves over composite extension fields?, Proceed-
ings of Eurocrypt ’01, LNCS 2045, pp. 30–39. Springer-Verlag, 2001.

[186] JH. Song, R. Poovendran, J. Lee, The AES-CMAC-96 Algorithm and Its Use with
IPsec, RFC4494, IETF, 2006.

[187] F. X. Standaert, Secure and Efficient Use of Reconfigurable Hardware Devices in
Symmetric Cryptography, Ph. D. thesis, Faculté des sciences appliquées, Université
catholique de Louvain.

[188] Standaert et al., Efficient Implementation of Rijndael Encryption in Reconfigurable
Hardware: Improvements and Design Tradeoffs, In Workshop on Cryptographic Hard-
ware and Embedded Systems — CHES 2003, Cologne, Germany, 2003, LNCS 2779,
pp. 334–350.

[189] J. Stern, D. Pointcheval, J. Malone-Lee, and N. P. Smart, Flaws in Ap-
plying Proof Methodologies to Signature Schemes, Proceedings Crypto 2002,
LNCS 2442, pp. 93–110, Springer-Verlag. Also available at http://www.di.ens.fr/ ˜
pointche/pub.php?reference=MaPoSmSt02

[190] M. Stevens, A. K. Lenstra and B. de Weger, Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities, Proceedings of EUROCRYPT 2007,
LNCS 4515, pp. 1–22, Springer-Verlag.

89

[191] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D.Molnar, D.A. Osvik and B. de
Weger. Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate.
Proceedings of Crypto 2009, LNCS 5677, Springer-Verlag.

[192] I. Tuomi, The Lives and Death of Moore’s Law, Available via
http://www.firstmonday.dk/issues/issue7 11/tuomi/

[193] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L.
Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear
magnetic resonance, Nature 414 (2001), 883–887.

[194] S. Vaudenay, Hidden collisions on DSS, Proceedings of Crypto’96, LNCS 1109, pp. 83–
88, Springer-Verlag, 1996.

[195] S. Vaudenay, The Security of DSA and ECDSA, Proceedings of PKC’03, LNCS 2567,
pp. 309–323 Springer-Verlag, 2003.

[196] S. Vaudenay, Security Flaws Induced by CBC Padding — Applications to SSL,
IPSEC,. . . Proceedings of Eurocrypt’02, LNCS 2332, pp. 534–545, Springer-Verlag,
2002.

[197] S. Vaudenay, On the weak keys of Blowfish, Proceedings of FSE’96, LNCS 1039,
pp. 27–32, Springer-Verlag, 1996.

[198] S. Vaudenay and M. Vuagnoux. Passive-Only Key Recovery Attacks on RC4, Proceed-
ings of SAC 2007, LNCS 4876, pp. 344-359, Springer-Verlag, 2007.

[199] VESA, DisplayPort Specification. Available at www.vesa.org

[200] L. Wang, K. Ohta and N. Kunihiro, New Key-Recovery Attacks on HMAC/NMAC-MD4
and NMAC-MD5, Proceedings of Eurocrypt 2008, 4965, pp. 237–253, Springer-Verlag.

[201] X. Wang and D. Feng, X. Lai, and H. Yu, How to Break MD5 and other Hash Functions,
Proceedings of Eurocrypt’05, LNCS 3494, pp. 19–35, Springer-Verlag, 2005.

[202] X. Wang, Y.L. Yin, and H. Yu, Finding Collisions in the Full SHA-1, Proceedings of
Crypto’05, LNCS 3621, pp. 17–36, Springer-Verlag, 2005.

[203] X. Wang, New Collision search for SHA-1, Manuscript, presented at rump session of
Crypto’05.

[204] D. Watanabe, A. Biryukov, and C. De Canniére, A Distinguishing Attack of SNOW
2.0 with Linear Masking Method, Proceedings of SAC 2003, LNCS 3006, pp. 222–233,
Springer-Verlag, 2004.

[205] Weil descent page, http://www.cs.bris.ac.uk/˜nigel/weil descent.html

[206] B. Weis, The Use of RSA Signatures within ESP and AH, IETF draft
http://www.ietf.org/internet-drafts/draft-ietf-msec-ipsec-signatures-03.txt, Nov 2004.

[207] M. J. Wiener, Performance Comparison of Public-Key Cryptosystems, RSA Crypto-
Bytes 4:1 (1998), 1–5.

90

[208] L. C. Williams, A Discussion of the Importance of Key Length
in Symmetric and Asymmetric Cryptography, Available via
http://www.giac.org/practical/gsec/Lorraine Williams GSEC.pdf

[209] Xilinx. Xilinx Press Release #03142. Available at http://www.xilinx.com/prs rls/
silicon spart/03142s3 pricing.htm.

[210] H. Yoshida and A. Biryukov, Analysis of a SHA-256 Variant, Proceedings of SAC
2005, LNCS 3897, Springer-Verlag, pp. 245–260.

Appendix A

Glossary

Abbreviations, most of which are explained in more detail in the documents.

3GPP 3rd Generation Partnership Project
AES Advanced Encryption Standard
ANSI American National Standards Institute
ASIC Application-Specific Integrated Circuit
CCA Chosen Ciphertext Attack
CDH Computational Diffie-Hellman Assumption
CMA Chosen Message Attack
CPU Central Processing Unit
CRT Chineese Remainder Theorem
DDH Decisional Diffie-Hellman Assumption
DES Data Encryption Standard
DH Diffie-Hellman
DLOG Discrete Logarithm
DSA Digital Signature Algorithm
DSS Digital Signature Standard
FPGA Field Programmable Gate Array
EC Elliptic Curve
ECC Elliptic Curve Cryptography
EFF Electronic Frontier Foundation
ETSI European Telecommunications Standards Institute
FIPS Federal Information Processing Standard
HW Hardware
TLB Translation Lookaside Buffer

91

92

IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Taskforce
IEC International Electrotechnical Commission
IKE Internet Key Exchange
ISO International Standardization Organization
IP Internet Protocol
IV Initialization Value
KEM Key Encapsulation Method
KDF Key Derivation Function
MAC Message Authentication Code
MD Message Digest
MIME Multipurpose Internet Mail Extensions
MIPS Mega/Million Instructions Per Second
NESSIE New European Schemes for Signatures, Integrity and Encryption
NFS Number Field Sieve
NIST National Institute of Standards and Technology
NIST SP NIST Special Publication
OAEP Optimal Asymmetric Encryption Padding
PK Public Key
PKCS Public Key Cryptography Standard
PRNG Pseudo-random Number Generator
PSS Probabilistic Signature Scheme
QS Quadratic Sieve
RFC Request For Comments (see www.ietf.org)
ROM Random Oracle Model
RSA Rivest-Shamir-Adleman cryptosystem
SHA Secure Hash Algorithm
TLS Transport Layer Security
UMTS Universal Mobile Telecommunication System
WTLS Wireless TLS
ZK Zero Knowledge

