19 research outputs found

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    AbstractLarge datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.</jats:p

    All-blade-coated flexible perovskite solar cells & modules processed in air from a sustainable dimethyl sulfoxide (DMSO)-based solvent system

    No full text
    Flexible perovskite solar cells have been considered promising candidates for novel applications that require a high power-to-weight ratio. However, the scalable ambient air deposition of efficient devices remains a major challenge of this technology. In addition, toxic solvents are regularly used in perovskite layer deposition, which can damage the environment and endanger the safety of potential production lines. In this paper, we introduce sustainable flexible perovskite solar modules (flex-PSMs), in which all layers are deposited via blade coating in ambient air without the usage of toxic solvents. A double-cation Cs(0.15)FA(0.85)PbI(3-x)Br(x)-based perovskite is blade coated in two steps as the absorber and the coating parameters are optimized. We found that proper drying in the first step is crucial to obtain high-quality perovskite films with the right phase of the perovskite. We improved the morphology and limited the voids in the perovskite layer by additive engineering and obtained 14% efficiency. Finally, 94 cm(2) modules were manufactured to demonstrate the scalability of the process

    Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Solar Modules

    No full text
    Organo-metal halide perovskite demonstrates a large potential for achieving highly efficient photovoltaic devices. The scaling-up process represents one of the major challenges to exploit this technology at the industrial level. Here, the scaling-up of perovskite solar modules from 5 x 5 to 10 x 10 cm(2) substrate area is reported by blade coating both the CH3NH3PbI3 perovskite and spiro-OMeTAD layers. The sequential deposition approach is used in which both lead iodide (PbI2) deposition and the conversion step are optimized by using additives. The PbI2 solution is modified by adding methylammonium iodide (MAI) which improves perovskite crystallinity and pore filling of the mesoporous TiO2 scaffold. Optimization of the conversion step is achieved by adding a small concentration of water into the MAI-based solution, producing large cubic CH3NH3PbI3 grains. The combination of the two modifications leads to a power conversion efficiency of 14.7% on a perovskite solar module with an active area of 47 cm(2)

    Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layer

    Get PDF
    Operational stability of perovskite solar cells (PSCs) is rapidly becoming one of the pressing bottlenecks for their upscaling and integration of such promising photovoltaic technology. Instability of the hole transport layer (HTL) has been considered as one of the potential origins of short life-time of the PSCs. In this work, by varying the molecular weight (MW) of doped poly(triarylamine) (PTAA) HTL, we improved by one order of magnitude the charge mobility inside the HTL and the charge transfer at the perovskite/HTL interface. We demonstrate that this occurs via the enhancement of polaron delocalization on the polymeric chains through the combined effect of doping strategy and MW tuning. By using high MW PTAA doped combining three different dopant, we demonstrate stable PSCs with typical power conversion efficiencies above 20%, retain more than 90% of the initial efficiency after 1080 hours thermal stress at 85 ⁰C and 87% of initial efficiency after 160 hours exposure against 1 sun light soaking. By using this doping-MW strategy, we realized perovskite solar modules with an efficiency of 17% on an active area of 43 cm2, keeping above 90% of the initial efficiency after 800 hours thermal stress at 85 ⁰C. These results, obtained in ambient conditions, pave the way toward the industrialization of PSC-based photovoltaic technology.Horizon 2020, Ministry of Education and Science of the Russian Federation, Alexander von Humboldt Foundation, German Federal Ministry of Education and Research, Winton Studentship, Lloyd's Register Foundation, Jardine Foundation, Cambridge Trust, EPSR
    corecore