31 research outputs found

    IGF1 Is a Common Target Gene of Ewing's Sarcoma Fusion Proteins in Mesenchymal Progenitor Cells

    Get PDF
    The EWS-FLI-1 fusion protein is associated with 85-90% of Ewing's sarcoma family tumors (ESFT), the remaining 10-15% of cases expressing chimeric genes encoding EWS or FUS fused to one of several ets transcription factor family members, including ERG-1, FEV, ETV1 and ETV6. ESFT are dependent on insulin-like growth factor-1 (IGF-1) for growth and survival and recent evidence suggests that mesenchymal progenitor/stem cells constitute a candidate ESFT origin. To address the functional relatedness between ESFT-associated fusion proteins, we compared mouse progenitor cell (MPC) permissiveness for EWS-FLI-1, EWS-ERG and FUS-ERG expression and assessed the corresponding expression profile changes. Whereas all MPC isolates tested could stably express EWS-FLI-1, only some sustained stable EWS-ERG expression and none could express FUS-ERG for more than 3-5 days. Only 14% and 4% of the total number of genes that were respectively induced and repressed in MPCs by the three fusion proteins were shared. However, all three fusion proteins, but neither FLI-1 nor ERG-1 alone, activated the IGF1 promoter and induced IGF1 expression. Whereas expression of different ESFT-associated fusion proteins may require distinct cellular microenvironments and induce transcriptome changes of limited similarity, IGF1 induction may provide one common mechanism for their implication in ESFT pathogenesis

    EWS/ETS Regulates the Expression of the Dickkopf Family in Ewing Family Tumor Cells

    Get PDF
    BACKGROUND: The Dickkopf (DKK) family comprises a set of proteins that function as regulators of Wnt/beta-catenin signaling and has a crucial role in development. Recent studies have revealed the involvement of this family in tumorigenesis, however their role in tumorigenesis is still remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: We found increased expression of DKK2 but decreased expression of DKK1 in Ewing family tumor (EFT) cells. We showed that EFT-specific EWS/ETS fusion proteins enhance the DKK2 promoter activity, but not DKK1 promoter activity, via ets binding sites (EBSs) in the 5' upstream region. EWS/ETS-mediated transactivation of the promoter was suppressed by the deletion and mutation of EBSs located upstream of the DKK2 gene. Interestingly, the inducible expression of EWS/ETS resulted in the strong induction of DKK2 expression and inhibition of DKK1 expression in human primary mesenchymal progenitor cells that are thought to be a candidate of cell origin of EFT. In addition, using an EFT cell line SK-ES1 cells, we also demonstrated that the expression of DKK1 and DKK2 is mutually exclusive, and the ectopic expression of DKK1, but not DKK2, resulted in the suppression of tumor growth in immuno-deficient mice. CONCLUSIONS/SIGNIFICANCE: Our results suggested that DKK2 could not functionally substitute for DKK1 tumor-suppressive effect in EFT. Given the mutually exclusive expression of DKK1 and DKK2, EWS/ETS regulates the transcription of the DKK family, and the EWS/ETS-mediated DKK2 up-regulation could affect the tumorigenicity of EFT in an indirect manner

    Reactivation of TWIST1 contributes to Ewing sarcoma metastasis

    No full text
    BACKGROUND: Ewing sarcoma is a cancer of bone and soft tissue. Despite aggressive treatment, survival remains poor, particularly in patients with metastatic disease. Failure to treat Ewing sarcoma is due to the lack of understanding of the molecular pathways that regulate metastasis. In addition, no molecular prognostic markers have been identified for Ewing sarcoma to risk stratify patients. PROCEDURE: Ewing sarcoma patients were divided into high or low Twist1 gene expression and survival curves were generated using the R2 microarray-based Genomic Analysis platform (http://r2.amc.nl). Tumors from Ewing sarcoma patients were also evaluated for TWIST1 expression by immunohistochemistry. Ewing sarcoma xenografts were established to evaluate the role of TWIST1 in metastasis. The effects of Twist1 on migration and invasion were evaluated using migration and invasion assays in A673 and RDES cells. RESULTS: Twist1 expression was a negative prognostic marker for overall survival in a public Ewing sarcoma patient data set based on Twist1 mRNA levels and in patient tumor samples based on Twist1 immunohistochemistry. TWIST1 is detected in significantly higher percentage of patients with metastatic diseases than localized disease. Using Ewing sarcoma tumor xenografts in mice, we found that suppressing TWIST1 levels suppressed metastasis without affecting primary tumor development. Knockdown of Twist1 inhibited the migration and invasion capability, while overexpression of Twist1 promoted migration and invasion in Ewing sarcoma cells. CONCLUSION: These results suggest that TWIST1 promotes metastasis in Ewing sarcoma and could be used as a prognostic marker for treatment stratification; however, further validation is required in a larger cohort of patients

    Ewing sarcoma gene Ews regulates hematopoietic stem cell senescence

    No full text
    The longevity of organisms is maintained by stem cells. If an organism loses the ability to maintain a balance between quiescence and differentiation in the stem/progenitor cell compartment due to aging and/or stress, this may result in death or age-associated diseases, including cancer. Ewing sarcoma is the most lethal bone tumor in young patients and arises from primitive stem cells. Here, we demonstrated that endogenous Ewing sarcoma gene (Ews) is indispensable for stem cell quiescence, and that the ablation of Ews promotes the early onset of senescence in hematopoietic stem progenitor cells. The phenotypic and functional changes in Ews-deficient stem cells were accompanied by an increase in senescence-associated ÎČ-galactosidase staining and a marked induction of p16INK4a compared with wild-type counterparts. With its relevance to cancer and possibly aging, EWS is likely to play a significant role in maintaining the functional capacity of stem cells and may provide further insight into the complexity of Ewing sarcoma in the context of stem cells
    corecore