152 research outputs found

    HOx and NOx production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d(7), and 1,3-propyl dinitrite at lambda=254, 350, and 369 nm

    Get PDF
    Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (HO2), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (O-3) at), = 254 nm, photolysis of H2O at), = 185 nm, and via reactions of O(D-1) with H2O and nitrous oxide (N2O); O(D-1) is formed via photolysis of O-3 at = 254 nm and/or N2O at = 185 nm. Here, we adapt a complementary method that uses alkyl nitrite photolysis as a source of OH via its production of HO2 and NO followed by the reaction NO + HO2 -> NO2 + OH. We present experimental and model characterization of the OH exposure and NO, levels generated via photolysis of C3 alkyl nitrites (isopropyl nitrite, perdeuterated isopropyl nitrite, 1,3-propyl dinitrite) in the Potential Aerosol Mass (PAM) OFR as a function of photolysis wavelength (7, = 254 to 369 nm) and organic nitrite concentration (0.5 to 20 ppm). We also apply this technique in conjunction with chemical ionization mass spectrometer measurements of multifunctional oxidation products generated following the exposure of a-Pinene to HO, and NO, obtained using both isopropyl nitrite and O-3 + H2O + N2O as the radical precursors.Peer reviewe

    RAS at the Golgi antagonizes malignant transformation through PTPRκ-mediated inhibition of ERK activation

    Get PDF
    © The Author(s) 2018.RAS GTPases are frequently mutated in human cancer. H- and NRAS isoforms are distributed over both plasma-membrane and endomembranes, including the Golgi complex, but how this organizational context contributes to cellular transformation is unknown. Here we show that RAS at the Golgi is selectively activated by apoptogenic stimuli and antagonizes cell survival by suppressing ERK activity through the induction of PTPRκ, which targets CRAF for dephosphorylation. Consistently, in contrast to what occurs at the plasma-membrane, RAS at the Golgi cannot induce melanoma in zebrafish. Inactivation of PTPRκ, which occurs frequently in human melanoma, often coincident with TP53 inactivation, accelerates RAS-ERK pathway-driven melanomagenesis in zebrafish. Likewise, tp53 disruption in zebrafish facilitates oncogenesis driven by RAS from the Golgi complex. Thus, RAS oncogenic potential is strictly dependent on its sublocalization, with Golgi complex-located RAS antagonizing tumor development.We are grateful to Drs: Ignacio Rubio, Yardena Samuels, Mariano Barbacid and Javier León for providing reagents; and Alicia Noriega, Sandra Zunzunegui y Victor Campa for technical support. Crespo laboratory is supported by grant SAF-2015 63638R (MINECO/ FEDER, UE); by Red Temática de Investigación Cooperativa sobre el Cáncer (RTICC). RD/12/0036/0033 and by Asociación Española Contra el Cáncer (AECC), grant GCB141423113. Work in the Hurlstone laboratory was unded by a grant from the European Research Council (ERC-2011-StG-282059 PROMINENT). B.C. is supported by a Retos Jóvenes Investigadores grant SAF2015-73364-JIN (AEI/FEDER, UE) and a grant from Fundación Francisco Cobos. X.R.B. is supported by grants from the CastillaLeón Government (BIO/SA01/15, CSI049U16), MINECO (SAF2015-64556-R, RD12/ 0036/0002), Worldwide Cancer Research (14-1248), Ramón Areces Foundation, andAECC (GC16173472GARC). Spanish funding to P.C., B.C., and X.R.B. is partially supported by the European Regional Development Fund

    Corticotroph Aggressive Pituitary Tumors and Carcinomas Frequently Harbor ATRX Mutations

    Get PDF
    Context: Aggressive pituitary tumors (APTs) are characterized by unusually rapid growth and lack of response to standard treatment. About 1% to 2% develop metastases being classified as pituitary carcinomas (PCs). For unknown reasons, the corticotroph tumors are overrepresented among APTs and PCs. Mutations in the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene, regulating chromatin remodeling and telomere maintenance, have been implicated in the development of several cancer types, including neuroendocrine tumors. Objective: To study ATRX protein expression and mutational status of the ATRX gene in APTs and PCs. Design: We investigated ATRX protein expression by using immunohistochemistry in 30 APTs and 18 PCs, mostly of Pit-1 and T-Pit cell lineage. In tumors lacking ATRX immunolabeling, mutational status of the ATRX gene was explored. Results: Nine of the 48 tumors (19%) demonstrated lack of ATRX immunolabelling with a higher proportion in patients with PCs (5/18; 28%) than in those with APTs (4/30;13%). Lack of ATRX was most common in the corticotroph tumors, 7/22 (32%), versus tumors of the Pit-1 lineage, 2/24 (8%). Loss-of-function ATRX mutations were found in all 9 ATRX immunonegative cases: nonsense mutations (n = 4), frameshift deletions (n = 4), and large deletions affecting 22-28 of the 36 exons (n = 3). More than 1 ATRX gene defect was identified in 2 PCs. Conclusion: ATRX mutations occur in a subset of APTs and are more common in corticotroph tumors. The findings provide a rationale for performing ATRX immunohistochemistry to identify patients at risk of developing aggressive and potentially metastatic pituitary tumors.Peer reviewe

    Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLRs) have garnered an extraordinary amount of interest in cancer research due to their role in tumor progression. By activating the production of several biological factors, TLRs induce type I interferons and other cytokines, which drive an inflammatory response and activate the adaptive immune system. The aim of this study was to investigate the expression and clinical relevance of TLR3, 4 and 9 in breast cancer.</p> <p>Methods</p> <p>The expression levels of TLR3, TLR4 and TLR9 were analyzed on tumors from 74 patients with breast cancer. The analysis was performed by immunohistochemistry.</p> <p>Results</p> <p>Samples of carcinomas with recurrence exhibited a significant increase in the mRNA levels of TLR3, TLR4 and TLR9. Tumors showed high expression of TLRs expression levels by cancer cells, especially TLR4 and 9. Nevertheless, a significant percentage of tumors also showed TLR4 expression by mononuclear inflammatory cells (21.6%) and TLR9 expression by fibroblast-like cells (57.5%). Tumors with high TLR3 expression by tumor cell or with high TLR4 expression by mononuclear inflammatory cells were significantly associated with higher probability of metastasis. However, tumours with high TLR9 expression by fibroblast-like cells were associated with low probability of metastasis.</p> <p>Conclusions</p> <p>The expression levels of TLR3, TLR4 and TLR9 have clinical interest as indicators of tumor aggressiveness in breast cancer. TLRs may represent therapeutic targets in breast cancer.</p

    Dystroglycan versatility in cell adhesion: a tale of multiple motifs

    Get PDF
    Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular a-subunit makes connections with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular matrix and the transmembrane b-subunit makes connections to the actin filament network via cytoskeletal linkers including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatiotemporal regulation

    Aconitase Regulation of Erythropoiesis Correlates with a Novel Licensing Function in Erythropoietin-Induced ERK Signaling

    Get PDF
    Erythroid development requires the action of erythropoietin (EPO) on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability. In the current study, a regulatory role for aconitase during erythropoiesis was ascertained using a direct inhibitory strategy.In C57BL/6 mice, infusion of an aconitase active-site inhibitor caused a hypoplastic anemia and suppressed responsiveness to hemolytic challenge. In a murine model of polycythemia vera, aconitase inhibition rapidly normalized red cell counts, but did not perturb other lineages. In primary erythroid progenitor cultures, aconitase inhibition impaired proliferation and maturation but had no effect on viability or ATP levels. This inhibition correlated with a blockade in EPO signal transmission specifically via ERK, with preservation of JAK2-STAT5 and Akt activation. Correspondingly, a physical interaction between ERK and mitochondrial aconitase was identified and found to be sensitive to aconitase inhibition.Direct aconitase inhibition interferes with erythropoiesis in vivo and in vitro, confirming a lineage-selective regulatory role involving its enzymatic activity. This inhibition spares metabolic function but impedes EPO-induced ERK signaling and disturbs a newly identified ERK-aconitase physical interaction. We propose a model in which aconitase functions as a licensing factor in ERK-dependent proliferation and differentiation, thereby providing a regulatory input for iron in EPO-dependent erythropoiesis. Directly targeting aconitase may provide an alternative to phlebotomy in the treatment of polycythemia vera

    Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer

    Get PDF
    Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit

    Negative feedback regulation of the ERK1/2 MAPK pathway

    Get PDF
    The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance
    corecore