42 research outputs found

    Proteomic Analysis of Resistance of Gram-Negative Bacteria to Chlorhexidine and Impacts on Susceptibility to Colistin, Antimicrobial Peptides, and Ceragenins

    Get PDF
    Use of chlorhexidine in clinical settings has led to concerns that repeated exposure of bacteria to sub-lethal doses of chlorhexidine might result in chlorhexidine resistance and cross resistance with other cationic antimicrobials including colistin, endogenous antimicrobial peptides (AMPs) and their mimics, ceragenins. We have previously shown that colistin-resistant Gram-negative bacteria remain susceptible to AMPs and ceragenins. Here, we investigated the potential for cross resistance between chlorhexidine, colistin, AMPs and ceragenins by serial exposure of standard strains of Gram-negative bacteria to chlorhexidine to generate resistant populations of organisms. Furthermore, we performed a proteomics study on the chlorhexidine-resistant strains and compared them to the wild-type strains to find the pathways by which bacteria develop resistance to chlorhexidine. Serial exposure of Gram-negative bacteria to chlorhexidine resulted in four- to eight-fold increases in minimum inhibitory concentrations (MICs). Chlorhexidine-resistant organisms showed decreased susceptibility to colistin (8- to 32-fold increases in MICs) despite not being exposed to colistin. In contrast, chlorhexidine-resistant organisms had the same MICs as the original strains when tested with representative AMPs (LL-37 and magainin I) and ceragenins (CSA-44 and CSA-131). These results imply that there may be a connection between the emergence of highly colistin-resistant Gram-negative pathogens and the prevalence of chlorhexidine usage. Yet, use of chlorhexidine may not impact innate immune defenses (e.g., AMPs) and their mimics (e.g., ceragenins). Here, we also show that chlorhexidine resistance is associated with upregulation of proteins involved in the assembly of LPS for outer membrane biogenesis and virulence factors in Pseudomonas aeruginosa. Additionally, resistance to chlorhexidine resulted in elevated expression levels of proteins associated with chaperones, efflux pumps, flagella and cell metabolism. This study provides a comprehensive overview of the evolutionary proteomic changes in P. aeruginosa following exposure to chlorhexidine and colistin. These results have important clinical implications considering the continuous application of chlorhexidine in hospitals that could influence the emergence of colistin-resistant strains

    Concert recording 2016-11-15

    Get PDF
    [Track 1]. Subjugation. Connection [Track 2]. Captivation / Durgan Maxey -- [Track 3]. Fight / Bryce Owens -- [Track 4]. Overture to Stay / Joshua Bland -- [Track 5]. A cellist\u27s legacy. Part I [Track 6]. Part II / Eric Dreggors -- [Track 7]. Evening prayer / Robbie Baker -- [Track 8]. Elegy / Brandon Wade -- [Track 9]. The grotesques trio. Gargoyles [Track 10]. Chimera [Track 11]. Grotesques / Marissa Johnson -- [Track 12]. Crosshair / Joshua Bland -- [Track 13]. Nightwind sings / L. Coley Pitchford -- [Track 14]. Six reflections through poetry. Memories (Walt Whitman) [Track 15]. The musician\u27s wife (Weldon Kees) [Track 16]. The road not taken (Robert Frost) [Track 17]. Lessons (Whitman) [Track 18]. Stronger lessons (Whitman) [Track 19]. O me! O life! (Whitman) / Nick Vecchio -- [Tracks 20-21]. String quartet #1 / Jeremiah Flannery -- [Track 22]. Tides. Morning tide [Track 23]. Bore tide / Elizabeth Greener -- [Track 24]. Shepherd\u27s contemplation / Robbie Baker -- Green grass / arranged by Eva Martin -- [Track 25]. Urbe fracta est II. A prayer for Jerusalem / Joshua Bland

    Mosaic Chromosomal alterations in Blood across ancestries Using Whole-Genome Sequencing

    Get PDF
    Megabase-scale mosaic chromosomal alterations (mCAs) in blood are prognostic markers for a host of human diseases. Here, to gain a better understanding of mCA rates in genetically diverse populations, we analyzed whole-genome sequencing data from 67,390 individuals from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program. We observed higher sensitivity with whole-genome sequencing data, compared with array-based data, in uncovering mCAs at low mutant cell fractions and found that individuals of European ancestry have the highest rates of autosomal mCAs and the lowest rates of chromosome X mCAs, compared with individuals of African or Hispanic ancestry. Although further studies in diverse populations will be needed to replicate our findings, we report three loci associated with loss of chromosome X, associations between autosomal mCAs and rare variants in DCPS, ADM17, PPP1R16B and TET2 and ancestry-specific variants in ATM and MPL with mCAs in cis

    Association Between Whole Blood-Derived Mitochondrial Dna Copy Number, Low-Density Lipoprotein Cholesterol, and Cardiovascular Disease Risk

    Get PDF
    Background The relationship between mitochondrial DNA copy number (mtDNA CN) and cardiovascular disease remains elusive. Methods and Results We performed cross-sectional and prospective association analyses of blood-derived mtDNA CN and cardiovascular disease outcomes in 27 316 participants in 8 cohorts of multiple racial and ethnic groups with whole-genome sequencing. We also performed Mendelian randomization to explore causal relationships of mtDNA CN with coronary heart disease (CHD) and cardiometabolic risk factors (obesity, diabetes, hypertension, and hyperlipidemia)

    brainlife.io: A decentralized and open source cloud platform to support neuroscience research

    Full text link
    Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool development to support rigor and transparency. Consequently, the complexity of the data pipeline has also increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io was developed to reduce these burdens and democratize modern neuroscience research across institutions and career levels. Using community software and hardware infrastructure, the platform provides open-source data standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and transparency in neuroscience research. Here brainlife.io's technology and data services are described and evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and 3,200 participants, we demonstrate that brainlife.io's services produce outputs that adhere to best practices in modern neuroscience research

    Type 2 Diabetes Modifies the association of Cad Genomic Risk Variants With Subclinical atherosclerosis

    Get PDF
    BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC

    The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

    Get PDF
    Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore