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ORIGINAL ARTICLE
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BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions 
remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical 
atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our 
understanding of the mechanisms leading to the increased CAD in T2D.

METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid 
intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 
5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We 
included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic 
main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant 
set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci 
had a significant interaction test.

RESULTS: Using a Bonferroni-corrected significance threshold of P<1.6×10−4, we identified 3 genes (ATP1B1, ARVCF, and LIPG) 
associated with CAC and 2 genes (ABCG8 and EIF2B2) associated with carotid intima-media thickness and carotid plaque, 
respectively, through gene-based rare variant set analysis. Both ATP1B1 and ARVCF also had significantly different associations 
for CAC in T2D cases versus controls. No significant interaction tests were identified through the candidate single-variant analysis.

CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC.
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Coronary artery disease (CAD) remains the leading 
cause of death among individuals with type 2 diabe-
tes (T2D). Both T2D and CAD are complex disease 

traits, with both inherited and environmental causes, 
making the presentation of T2D a unique risk factor 
for CAD. Several studies have examined the shared 
genetic pathways between T2D and CAD with limited 
insights.1–5 Additional measures of atherosclerosis exist 
and precede a clinical CAD event. These measures of 
subclinical atherosclerosis, including coronary artery cal-
cification (CAC), carotid intima-media thickness (CIMT), 
and carotid plaque, predict future coronary events inde-
pendent of known risk factors.6,7 Furthermore, measures 
of subclinical atherosclerosis relate more closely to the 
underlying casual mechanisms leading to a CAD event.8,9 
This is especially true for CAC, which is highly correlated 
with incident CAD and is included in CAD risk assess-
ment guidelines, especially for individuals with T2D.10 
Individuals with T2D have an increased risk of athero-
sclerosis, but additional investigation is warranted as to 
the biologic interdependence of these traits.11–16

While genome-wide association studies (GWASs) have 
identified hundreds of genetic loci associated with CAD, 
fewer GWAS-based discoveries have been observed for 
subclinical atherosclerosis measures despite their nota-
ble heritability and high genetic correlation with CAD.17–25 
Continuous subclinical atherosclerosis measures, such 
as CAC and CIMT, are particularly valuable in GWAS 
for measuring the early progression of atherosclerosis 
with greater statistical power than incident CAD. Fur-
thermore, many studies have not considered the role of 
T2D in their analyses, which may differentially influence 
the way loci impact the development of atherosclerosis. 
A study by Lu et al26 conducted a GWAS of subclinical 
atherosclerosis limited to individuals with T2D and sub-
sequently evaluated whether 161 known CAD loci were 
significantly associated with the development of subclin-
ical atherosclerosis in individuals with T2D. While they 
successfully identified 3 CAD loci that were significantly 
associated with CAC and CIMT in those with T2D, the 
study did not formally evaluate the differential associa-
tions of CAD loci in T2D compared with normoglycemic 
controls. Accounting for such differences by evaluating  
T2D-by-single-nucleotide variant (SNV) interaction 
terms may improve the power to detect CAD loci that 

have not previously been associated with subclinical ath-
erosclerosis in the context of T2D.27

Moreover, rare variants play a unique role in the devel-
opment of complex diseases, often having larger effects 
on disease than individual common variants.28,29 At least 
9 genes have been associated with CAD risk through 
aggregation of rare genetic variants, specifically in genes 
involved in regulating cholesterol levels.23,30 Previous 
studies have not yet evaluated whether T2D may also 
modify the association of rare genetic variants in the 
development of atherosclerosis.

Thus, the goal of this study was to test whether com-
mon and rare variants at known CAD loci depend on T2D 
to exert their atherogenic effects by testing associations 
with CAC, CIMT, and carotid plaque. We used a gene- 
by-environment interaction test framework, utilizing T2D 
as the effect modifier to identify CAD loci that are asso-
ciated with subclinical atherosclerosis.

METHODS
The study population included 29 670 participants from 
12 different studies that are a part of the Trans-Omics for 
Precision Medicine program sponsored by the National Heart, 
Lung, and Blood Institute (Table S1; Figure S1). Each study 
obtained informed consent from participants and approval from 
the appropriate institutional review boards. Additional details 
for these studies are available in the Supplemental Material. 
Individual whole-genome sequence data for Trans-Omics for 
Precision Medicine and harmonized subclinical atherosclerosis 
measurements at individual sample levels are available through 
restricted access via the Trans-Omics for Precision Medicine 
dbGaP Exchange area. Accession codes for genotype and 
phenotype files by cohort may be found in Table S1. This study 
did not rely on custom code or mathematical algorithms. The 
full methods for this study are available in the Supplemental 
Material.

RESULTS
Study Population
The study population consisted of 24 157 normoglyce-
mic controls and 5 513 T2D cases. Of the 29 670 par-
ticipants, 15 993 had data on CAC, 13 711 had data on 
CIMT, and 11 922 had data on plaque (Figure S1; Table 
S2). In the 15 993 individuals with CAC measured, the 
median CAC score was 0 (interquartile interval, 0–91) in 
normoglycemic controls and 32.7 (interquartile interval, 
0–289.8) in T2D cases. The prevalence of CAC score 
>0 was 26.2% and 35.0% in T2D controls versus cases, 
respectively. The average mean thickness between the 
carotid intima and media was 0.70 (SD, 0.22) mm in 
controls and 0.78 (SD, 0.22) mm in T2D cases. For indi-
viduals with carotid plaque measured, the presence of a 
carotid plaque was noted in 19% of controls and 22.7% 
of T2D cases.

Nonstandard Abbreviations and Acronyms

CAC	 coronary artery calcification
CAD	 coronary artery disease
CIMT	 carotid intima-media thickness
GWAS	 genome-wide association study
SNV	 single-nucleotide variant
T2D	 type 2 diabetes
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Candidate Variant Interaction Tests for CAC
A summary of the study design and overview is avail-
able in the Supplemental Material (Figure S2). Five 
candidate SNVs (rs2891168 near CDKN2B, rs7412 in 
APOE, rs9349379 near PHACTR1, rs9515203 near 
COL4A1, and rs55730499 in LPA; Table  1) were sig-
nificant according to the joint test (Pjoint

<1.7×10−4), but 
none had a significant interaction test. Instead, the joint 
associations of these variants were largely driven by their 
main genetic association with CAC, regardless of T2D 
status. All CAD variants, except rs55730499 near LPA, 
have also previously been identified as associated with 
CAC in published CAC GWAS.22,25,26

No SNVs met the Bonferroni-corrected threshold 
for significance in the interaction test, but 17 candidate 
variants were nominally significant (Pint and Pjoint

<0.05). 
Fifteen SNVs were in loci that had not previously been 
identified with CAC (Table 1). More than half (59%) of 

the observed effect estimates in T2D cases occurred in 
the same direction as CAD SNVs in the literature. The 
SNV with the strongest evidence for interaction with T2D 
was rs7623687 near RHOA (Pint=0.0004). T2D cases 
with alternate allele in rs7623687 had higher odds of a 
CAC score >0 (odds ratio, 1.29 [95% CI, 1.08–1.53] in 
T2D versus 0.98 [95% CI, 0.91–1.07] in controls; Table 
S3). The power to detect candidate SNV for associations 
across various minor allele frequency thresholds for CAC 
is presented in Table S4.

Rare Variant Candidate Gene–Based Interaction 
Results for CAC
Three genes, ARVCF, ATP1B1, and LIPG, were sig-
nificantly associated with CAC according to the gene-
based joint test (Pjoint

<1.6×10−4; Table 2). Furthermore, 
the interaction tests for ARVCF and ATP1B1 were also 

Table 1.  Significant and Nominally Significant Single-Variant Associations of CAD SNVs With CAC

SNV ID 

Chromosome, Position, 
Reference Allele Alter-
nate Allele* 

Nearest 
gene 

Estimated 
SNV effect in 
controls 

Estimated SNV 
effect in T2D 
cases 

Interaction P 
value† 

Joint P 
value† 

Direction of effect 
for SNV association 
in CAD‡ 

Significant associations of CAD SNVs using the joint test§  

 � rs2891168 9:22098620:A:G CDKN2B-
AS1

0.19±0.03 0.23±0.07 0.43 1.0×10−14 +

 � rs7412 19:44908822:C:T APOE −0.26±0.04 −0.45±0.11 0.10 6.9×10−13 −

 � rs9349379 6:12903725:A:G PHACTR1 0.18±0.03 0.04±0.08 0.08 4.27×10−9 +

 � rs9515203 13:110397276:T:C COL4A2 −0.11±0.03 −0.17±0.07 0.28 1.98×10−5 −

 � rs55730499 6:160584578:C:T LPA 0.25±0.06 0.14±0.16 0.44 9.27×10−5 +

Nominally significant associations for both joint and interaction tests‖

 � rs283485 2:232780981:G:A GIGYF2 0.02±0.03 0.19±0.06 0.001 1.96×10−4 +

 � rs7485656 12:124831101:A:G SCARB1 0.05±0.03 0.24±0.07 0.007 1.97×10−4 +

 � rs2839812 11:103802566:T:A MIR4693 −0.06±0.03 −0.17±0.06 0.019 2.29×10−4 −

 � rs7623687 3:49411133:A:C RHOA 0.01±0.04 0.30±0.08 4.21×10−4 4.83×10−4 −

 � rs6909752 6:22612400:G:A HDGFL1 0.01±0.03 0.17±0.06 0.004 0.002 +

 � rs12500824 4:76495474:A:G SHROOM3 −0.02±0.03 −0.16±0.06 0.011 0.004 +

 � rs2954029 8:125478730:A:T TRIB1 −0.03±0.03 −0.13±0.06 0.016 0.005 −

 � rs11591147 1:55039974:G:T PCSK9 −0.35±0.12 0.17±0.33 0.021 0.01 −

 � rs7118294 11:32358975:T:C WT1 0.06±0.03 −0.12±0.07 0.008 0.01 +

 � rs3775058 4:95196220:A:T UNC5C −0.07±0.03 0.10±0.07 0.017 0.02 −

 � rs11099493 4:81665896:A:G HNRNPD −0.04±0.03 0.14±0.07 0.006 0.02 −

 � rs1321309 6:36670859:G:A CDKN1A −0.02±0.03 0.20±0.07 0.008 0.03 +

 � rs4140748 2:229140789:A:G PID1 0.01±0.03 0.15±0.06 0.017 0.03 −

 � rs11601507 11:5679844:C:A TRIM5 0.04±0.05 0.20±0.14 0.033 0.03 +

 � rs2067831 10:103883465:G:C OBFC1 0.06±0.03 −0.08±0.08 0.022 0.03 +

 � rs584961 11:75566583:A:G SERPINH1 0±0.04 0.18±0.11 0.015 0.04 +

 � rs2895811 14:99667605:T:C HHIPL1 0±0.03 0.15±0.07 0.034 0.04 +

CAC indicates coronary artery calcification; CAD, coronary artery disease; ID, identifier; PC, principal component; SNV, single-nucleotide variant; and T2D, type 2 diabetes.
*Chromosome and position are in build hg38.
†P values were computed using linear mixed models accounting for age, sex, ancestry informative PC1-11, PC1-11-by-sex interaction terms, a PC1-2-by-T2D in-

teraction term, and a T2D-by-SNV interaction term.
‡Direction of the reported SNV association with CAD was based on the most significant P value from the literature.
§It consists of candidate CAD SNVs that met the Bonferroni-corrected threshold of 1.7×10−4.
‖It consists of candidate CAD SNVs that met the nominal significance level of P<0.05 in both joint and interaction tests.
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significant (Pint=9.9×10−5; Pint=4.0×10−5, respectively). 
Both ARVCF and ATP1B1 gene–based tests included 
variants in protein-coding regions. The significant 
ARVCF test included missense variants, while the signifi-
cant ATP1B1 associations were driven by synonymous 
variants.

Variants within each aggregation unit were evaluated 
for their individual variant contributions to their associ-
ated joint and interaction tests (Tables S5 and S6). For 
ATP1B1, notable changes in the joint P value (>100% 
change) were observed after the removal of 3 variants 
(>100% change). After excluding variant rs61742560, a 
nominally significant (P<0.05) main effect was no longer 
observed, but a strong contribution from the interaction 
test remained. After excluding either rs144621395 or 

rs61803314 from the analysis, the main effect P value 
remained the same with notable changes in Pint (Table 
S7). We further evaluated the distribution of CAC scores 
in individuals who were carriers of the minor allele for 
the variants with the largest contribution to the signifi-
cant gene-based test for ATP1B1. Overall, individuals 
with T2D who carried at least 1 of the alternate alleles 
of these variants had the lowest CAC scores (Figure). 
This is primarily driven by 2 variants: rs61742560 and 
rs61803314 (Figure S3). For individuals with T2D and 
rs144621395, the opposite association was observed, 
with the highest CAC scores observed in this group.

In ARVCF, 3 of the 59 variants within the ARVCF unit 
appeared to contribute the most to the significant associa-
tion tests. Excluding either rs113625788, rs116782322 
or rs76496156 notably changed the observed joint P 
values (>100% change), while the exclusion of the other 
variants did not (Table S8). We further evaluated 3 vari-
ants driving the significant interaction test for ARVCF. 
Individuals with T2D who carried at least 1 of the minor 
alleles of the 3 identified variants had the highest CAC 
scores (Figure; Figure S5).

Candidate Variant Interaction Tests With CIMT 
and Carotid Plaque
One variant (rs7412 in the APOE gene) was sig-
nificantly associated with CIMT using the joint test 
(Pjoint=2.6×10−6) but did not have a significant interac-
tion test. No CAD variants were significantly associated 
with carotid plaque. No significant interaction tests were 
observed for either CIMT or carotid plaque. Across both 

Table 2.  Genes Significantly Associated With CAC Score 
According to the Joint Test

Gene N variants 

Main 
effect P 
value1 

Interaction 
P value* 

Joint P 
value* 

Variant group-
ing strategy 

Ge-
nome 
region 

ARVCF 59 0.050 9.9×10−5 6.1×10−5 Missense Coding

ATP1B1 6 0.018 4.0×10−5 9.9×10−6 Synonymous Coding

LIPG 371 0.001 0.004 6.2×10−5 Enhancer 

overlaid with 

DHS sites

Non-

coding

CAC indicates coronary artery calcification; DHS, DNAse I hypersensitive site; 
PC, principal component; and T2D, type 2 diabetes.

*P values computed using linear mixed models accounting for age, sex, an-
cestry informative PC1-11, PC1-11-by-sex interaction terms, PC1-2-by-T2D 
interaction terms, and T2D-by-gene–based aggregation units. The main effect 
P value refers to the association of the gene-based aggregation unit. Interaction 
P value refers to the association of the T2D-by-gene–based aggregation unit in-
teraction term. The joint P value refers to the association of the combined test of 
both the T2D-by-gene–based interaction term and main effect association test.

Figure. Distribution of coronary artery calcification (CAC) score by carrier and type 2 diabetes (T2D) status.
Data are boxplots for the distribution of CAC scores for individuals according to their carrier and T2D status. Carriers were defined as carrying 
at least 1 minor allele from the largest contributing variants from the respective aggregation tests. A, Variants from the ATP1B1 aggregation 
unit. B, Variants from the ARVCF aggregation unit.
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traits, 24 variants met nominal significance (14 for CIMT 
and 10 for carotid plaque; Table 3). The variant with the 
smallest interaction P value for CIMT was at the SORT1 
locus (Pint=0.0004; Pjoint=0.002) and for carotid plaque 
at the ZC3HC1 (Pint=0.006; Pjoint=0.02) locus. Two nomi-
nally significant variants overlapped with the nominally 
significant findings from the CAC analysis (PCSK9 in 
CIMT and SCARB1 in carotid plaque).

Rare Variant Gene–Based Interaction Tests for 
CIMT and Plaque
Two gene-based aggregation units (ABCG8 with CIMT 
and EIF2B2 with carotid plaque) met the Bonferroni 
significance threshold (P<1.6×10−4) according to the 
joint test but not according to the interaction test (Table 
S9). While the main effect (interaction free) P value for 

ABCG8 met the significance threshold, the associa-
tion of EIF2B2 with carotid plaque was not significant 
according to the main effect (interaction free) P value 
alone. Instead, the significant association of EIF2B2 
required both the main and interaction effects to cross 
the Bonferroni significance threshold. Both gene-based 
aggregation units that were significant for the joint test 
included only protein-coding regions of the genome. 
The ABCG8 unit consisted of putative loss-of-function 
variants, while the EIF2B2 unit consisted of missense 
mutations.

We also evaluated the effect of CAC-associated 
genes on CIMT and carotid plaque. One variant category 
in ATP1B1 and 1 variant category in LIPG met nominal 
significance (P<0.05) for both the joint and interaction 
tests in CIMT (Table S10). None of the significantly asso-
ciated gene-based rare variant aggregation units with 

Table 3.  Nominally Significant (P<0.05 in Both Joint and Interaction Tests) Associations of CAD SNVs With CIMT and Carotid 
Plaque

SNV ID 
Chromosome: Position: Refer-
ence Allele: Alternative Allele* Nearest gene 

Estimated SNV 
effect in controls 

Estimated SNV 
effect in T2D 
cases† 

Interaction 
P value† 

Joint P 
value† 

Direction of 
SNV associa-
tion in CAD‡ 

CIMT

 � rs602633 1:109278889:T:G PSRC1 −0.003±0.003 0.026±0.007 3.62×10−4 0.002 −

 � rs668948 2:21068657:G:A APOB 0.01±0.003 −0.016±0.008 0.029 0.007 +

 � rs651007 9:133278431:T:C ABO −0.001±0.003 0.023±0.008 0.003 0.007 +

 � rs12976411 19:32391114:A:T ZNF507/
LOC400684

0.003±0.006 0.035±0.014 0.01 0.01 +

 � rs112949822 5:108749489:G:A FER −0.013±0.005 0.025±0.012 0.04 0.02 −

 � rs7991314 13:32551937:T:C N4BP2L2 0.0016±0.003 0.014±0.007 0.030 0.02 +

 � rs884811 10:98164006:C:G R3HCC1L 0.001±0.003 −0.016±0.007 0.02 0.02 +

 � rs944172 9:107755513:C:T KLF4 0.004±0.003 −0.019±0.007 0.007 0.02 +

 � rs56408342 8:22190977:G:A BMP1 −0.002±0.005 −0.027±0.012 0.03 0.03 +

 � rs768453105 19:41284181:GTTATGGTA:G HNRNPUL1 0.008±0.004 −0.025±0.01 0.02 0.03 +

 � rs6919211 6:133678730:C:G TARID −0.007±0.004 0.02±0.008 0.01 0.03 −

 � rs7617773 3:48152025:C:T CDC25A 0.002±0.003 0.014±0.007 0.04 0.03 +

 � rs11206510 1:55030366:T:C PCSK9 −0.008±0.004 0.017±0.008 0.04 0.04 +

Carotid plaque

 � rs35879803 4:145861685:C:A ZNF827 0.90 (0.84–0.97) 1.11 (0.95–1.30) 0.01 0.007 +

 � rs11057830 12:124822507:G:A SCARB1 1.03 (0.94–1.12) 1.31 (1.08–1.60) 0.01 0.0097 +

 � rs17083333 4:53705899:G:T FIP1L1/LNX1 1.04 (0.97–1.11) 1.25 (1.07–1.45) 0.01 0.01 −

 � rs6997330 8:19943018:G:C LPL 1.04 (0.90–1.20) 0.70 (0.55–0.90) 0.01 0.02 +

 � rs7991314 13:32551937:T:C N4BP2L2 1.03 (0.96–1.10) 1.22 (1.05–1.42) 0.04 0.02 +

 � rs11556924 7:130023656:C:T ZC3HC1 0.94 (0.87–1.02) 1.23 (1.02–1.48) 0.006 0.02 −

 � rs3184504 12:111446804:T:C ATXN2/HNF1A 8.03 (1.81–35.55) 0.39 (0.01–12.94) 0.02 0.02 +

 � rs10951983 7:6406396:A:G RAC1/DAGLB 1.04 (0.95–1.14) 1.35 (1.09–1.67) 0.03 0.03 +

 � rs11663411 18:59293278:T:C CPLX4 1.00 (0.93–1.08) 1.23 (1.04–1.45) 0.02 0.04 −

 � rs61797068 1:115359893:G:C NGF 1.05 (0.95–1.15) 0.78 (0.61–0.98) 0.01 0.046 −

CAD indicates coronary artery disease; CIMT, carotid intimate media thickness; ID, identifier; PC, principal component; SNV, single-nucleotide variant; and T2D, type 2 diabetes.
*Chromosome and position are in build hg38.
†P values were computed using linear or logistic models mixed models accounting for age, sex, ancestry informative PC1-11, PC1-11-by-sex interaction terms, a 

PC1-2-by-T2D interaction term, and a T2D-by-SNV interaction term for CIMT and carotid plaque, respectively.
‡Direction of the SNV association with CAD is based on the odds ratios from the literature, where >1.0 is + and <1.0 is −.
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CAC had a nominally significant association with carotid 
plaque (Table S11).

DISCUSSION
Our study highlights the importance of considering T2D 
case-control status in the development of subclinical  
atherosclerosis and subsequent CAD. Rare variant gene–
based interaction tests identified 2 CAD-associated  
genes, ARVCF and ATP1B1, whose association with 
CAC was modified by T2D status. Furthermore, 3 addi-
tional genes (LIPG with CAC, ABCG8 with CIMT, and 
EIF2B2 with carotid plaque) were significantly associ-
ated with subclinical atherosclerosis according to their 
respective joint tests, with nominally significant interac-
tion tests. While the single-variant SNV-by-T2D interac-
tion tests did not yield Bonferroni significant results for 
any of the subclinical atherosclerotic traits, many of the 
nominally significant associations were identified in CAD 
SNVs previously associated with lipid traits, supporting 
the importance of cholesterol to the underlying relation-
ship between subclinical atherosclerosis and T2D.

Rare variants in 2 genes, ARVCF and ATP1B1, were 
significantly associated with CAC with significantly differ-
ent associations observed in T2D cases compared with 
normoglycemic controls. Neither gene had previously 
been reported associated with CAC.22,25,31 Furthermore, 
despite common variant associations near these genes 
with CAD, the suspected role of ARVCF and ATP1B1 
in the development of atherosclerosis has not been 
well studied. ARVCF is a member of the catenin family, 
which plays an important role in cell adhesion and com-
munication.32 In addition to CAD, previous studies have 
associated the gene with pulse pressure and platelet 
count.33 Gene expression studies have shown high levels 
of ARVCF expression in arterial tissues.34 According to 
our data, individuals with T2D carrying at least 1 minor 
allele in ARVCF had higher levels of CAC than noncar-
riers. Interestingly, normoglycemic controls carrying at 
least 1 of the variants had the lowest observed CAC 
scores. These observations suggest that, for individuals 
with T2D, carriers of these mutations in ARVCF have an 
excess risk of elevated CAC and potential clinical CAD 
compared with noncarriers. Furthermore, the effects of 
the mutations in ARVCF may only accelerate the burden 
of CAC in the presence of disrupted glucose metabo-
lism such as those created by T2D. Additional studies are 
needed to further understand the mechanisms through 
which ARVCF increases CAC burden development in 
individuals with T2D.

Similarly, ATP1B1 belongs to a subfamily of Na(+)/
K(+)-ATPases responsible for establishing and main-
taining the electrochemical gradients of sodium and 
potassium ions across the plasma membranes.35 In 
addition to CAD, previous studies have shown that this 
gene is associated with QT interval length and venous 

thrombosis.36,37 Laboratory studies in mouse models 
associated expression levels of ATP1B1 with cardiac 
contractility and calcium homeostasis.38,39 Our data sug-
gest that 2 rare variants contributed the most to the 
observed differences in this gene between T2D status 
and CAC burden development. These 2 variants act in 
opposing directions. Interestingly, individuals with T2D 
and carrying the alternate allele in rs61803314 had 
the lowest observed CAC scores. This protective effect 
against excessive CAC for T2D cases is of particular 
interest as it may provide therapeutic insights into slow-
ing the progression or preventing CAC buildup and sub-
sequent CAD for such a high-risk group.

Three additional CAD genes (LIPG with CAC, ABCG8 
with CIMT, and EIF2B2 with carotid plaque) were also 
significantly associated with subclinical atherosclero-
sis according to the joint test. In addition to CAD,19,20 
GWAS studies of lipid traits have identified common 
variant associations in LIPG, ABCG8, and EIF2B2 with 
total, high-density lipoprotein, and low-density lipopro-
tein cholesterol levels.40 While the interaction with T2D 
at each of these genes is only nominally significant, both  
LIPG and EIF2B2 would not have reached the Bonferroni- 
corrected significance threshold by evaluating the  
main effects alone. Thus, the observed significance of 
the association test required the inclusion of the T2D 
interaction term to be discovered. This is consistent with 
the shared evidence related to the importance of lipid 
metabolism in T2D and atherosclerosis. Improving our 
understanding of how T2D may exacerbate the roles 
of LIPG and EIF2B2 in their respective subclinical traits 
may highlight distinct pathways through which individuals 
with T2D experience excess risk for a CAD event.

While common candidate SNV tests were less suc-
cessful at detecting novel significant associations for 
their respective subclinical traits, a couple of interesting 
observations were made. First, 2 SNVs (near SCARB1 
and PCSK9) were nominally significant for >1 subclinical 
atherosclerosis trait. Both variants are near genes with 
well-known roles in lipid metabolism, echoing findings 
from our rare variant gene–based analysis, highlighting 
the strong pathogenic link between lipid metabolism, glu-
cose metabolism, and subclinical atherosclerosis. Second, 
for most of the variants, the direction of association with 
subclinical atherosclerosis in T2D cases mirrored the 
direction of association identified with CAD. This echoes 
the results from the Lu et al26 study of subclinical athero-
sclerosis GWAS in T2D only, where they identified 3 sig-
nificant associations (rs2891168 near CDKN2B-AS1 at 
9p21, rs11170820 near FLJ12825 for CAC, and rs7412 
near APOE for CIMT), concluding that some CAD loci 
act through subclinical atherosclerosis in individuals with 
T2D. Finally, while these associations were only nominally 
significant, the contributions from the interaction tests 
were the primary drivers of the nominally significant asso-
ciations, suggesting that the overall fit of the model was 
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improved by the inclusion of the T2D interaction term. 
This highlights the importance of considering T2D, and 
perhaps other important risk factors, in understanding the 
genetics of subclinical atherosclerosis and CAD.

A few limitations of this study must be acknowledged. 
First, while representing the largest whole-genome 
sequence study of subclinical atherosclerosis in T2D to 
date, our analysis had a limited sample size. Despite this 
limitation, our analysis conserved power using a candidate 
SNV and gene approach, to identify CAD loci that rely on 
T2D status to associate with subclinical atherosclerosis. 
Similarly, we were able to use 2 continuous atherosclerotic 
traits in CAC and CIMT, which also conserved power and 
allowed for a shorter time between T2D onset and each 
outcome measurement. Second, we were limited to CAD 
SNVs primarily discovered in European and East Asian 
ancestries. Recent studies suggest that including popula-
tions for different ancestry populations improves fine map-
ping and increases the probability of identifying potentially 
causal loci.41 It is possible that the reason for the lack of 
associations observed in our candidate single-variant anal-
ysis is because the selected variants were not representa-
tive of the true casual associations. Future studies may 
expand the SNV set to accommodate large CAD GWAS 
on individuals with African and Hispanic backgrounds. 
Third, while we removed individuals with prediabetes from 
our analysis to lower the likelihood of misclassification of 
T2D status in our controls, it is possible that individuals 
with a high risk of T2D still exist in the controls, lower-
ing our ability to detect significant interactions, particularly 
in the SNV analysis. Finally, our rare variant analysis was 
restricted to CAD loci defined by proximity to the near-
est SNV. While previous studies have also supported this 
approach, some of the loci included in our study may not 
have been the true associated CAD gene based on more 
advanced gene prioritization methods.

This study also has several strengths. We carefully 
and clearly defined our case-control groups, specifically 
restricting our study to include only normoglycemic con-
trols to further improve the interpretability of our findings. 
We also leveraged data from multiple race and ethnicity 
groups to further expand the generalizability of our study. 
Similarly, this study did not need to rely on imputed geno-
types, given the availability of whole-genome sequence 
data. This allowed us to use both single-variant and 
gene-based methods to characterize both common and 
rare variations. Most importantly, being able to include 
the T2D interaction terms provided the opportunity to 
identify differential associations with CAC in those with 
T2D and those without.

CONCLUSIONS
We evaluated the role of common and rare genetic varia-
tion in CAD loci in the development of subclinical athero-
sclerosis accounting for interaction with T2D and identified 

genes associated with subclinical atherosclerosis of which 
2 genes, ARVCF and ATP1B1, had significant gene-T2D 
interaction effects. While no significant CAD SNV-T2D 
interaction effects were detected, nominally significant 
associations across traits still highlighted the importance 
of lipid traits in the development of subclinical atheroscle-
rosis, especially for individuals with T2D. Our results sug-
gest that using T2D interaction terms improved our ability 
to detect CAD loci associated with subclinical atheroscle-
rosis and highlight the importance of considering T2D, and 
other important risk factors, in understanding the genetics 
of subclinical atherosclerosis and CAD.
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