65 research outputs found

    Female Faith Leaders in Collaboration: Rabbis, Nuns, and Ministers for (Nearly) 50 Years

    Get PDF
    13th Annual Lecture in Jewish and Christian Engagement… Rabbi Carole B. Balin, PhD, Auburn Seminary, Professor Emerita of History HUC-JIR. Response by Elena Procario-Foley, PhD, Iona College.https://digitalcommons.fairfield.edu/bennettcenter-posters/1355/thumbnail.jp

    Evaluation of automated airway morphological quantification for assessing fibrosing lung disease

    Get PDF
    Abnormal airway dilatation, termed traction bronchiectasis, is a typical feature of idiopathic pulmonary fibrosis (IPF). Volumetric computed tomography (CT) imaging captures the loss of normal airway tapering in IPF. We postulated that automated quantification of airway abnormalities could provide estimates of IPF disease extent and severity. We propose AirQuant, an automated computational pipeline that systematically parcellates the airway tree into its lobes and generational branches from a deep learning based airway segmentation, deriving airway structural measures from chest CT. Importantly, AirQuant prevents the occurrence of spurious airway branches by thick wave propagation and removes loops in the airway-tree by graph search, overcoming limitations of existing airway skeletonisation algorithms. Tapering between airway segments (intertapering) and airway tortuosity computed by AirQuant were compared between 14 healthy participants and 14 IPF patients. Airway intertapering was significantly reduced in IPF patients, and airway tortuosity was significantly increased when compared to healthy controls. Differences were most marked in the lower lobes, conforming to the typical distribution of IPF-related damage. AirQuant is an open-source pipeline that avoids limitations of existing airway quantification algorithms and has clinical interpretability. Automated airway measurements may have potential as novel imaging biomarkers of IPF severity and disease extent

    The Open-Access European Prevention of Alzheimer's Dementia (EPAD) MRI dataset and processing workflow

    Get PDF
    The European Prevention of Alzheimer Dementia (EPAD) is a multi-center study that aims to characterize the preclinical and prodromal stages of Alzheimer's Disease. The EPAD imaging dataset includes core (3D T1w, 3D FLAIR) and advanced (ASL, diffusion MRI, and resting-state fMRI) MRI sequences. Here, we give an overview of the semi-automatic multimodal and multisite pipeline that we developed to curate, preprocess, quality control (QC), and compute image-derived phenotypes (IDPs) from the EPAD MRI dataset. This pipeline harmonizes DICOM data structure across sites and performs standardized MRI preprocessing steps. A semi-automated MRI QC procedure was implemented to visualize and flag MRI images next to site-specific distributions of QC features - i.e. metrics that represent image quality. The value of each of these QC features was evaluated through comparison with visual assessment and step-wise parameter selection based on logistic regression. IDPs were computed from 5 different MRI modalities and their sanity and potential clinical relevance were ascertained by assessing their relationship with biological markers of aging and dementia. The EPAD v1500.0 data release encompassed core structural scans from 1356 participants 842 fMRI, 831 dMRI, and 858 ASL scans. From 1356 3D T1w images, we identified 17 images with poor quality and 61 with moderate quality. Five QC features - Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR), Coefficient of Joint Variation (CJV), Foreground-Background energy Ratio (FBER), and Image Quality Rate (IQR) - were selected as the most informative on image quality by comparison with visual assessment. The multimodal IDPs showed greater impairment in associations with age and dementia biomarkers, demonstrating the potential of the dataset for future clinical analyses

    Characterizing Complex Polysera Produced by Antigen-Specific Immunization through the Use of Affinity-Selected Mimotopes

    Get PDF
    BACKGROUND: Antigen-based (as opposed to whole organism) vaccines are actively being pursued for numerous indications. Even though different formulations may produce similar levels of total antigen-specific antibody, the composition of the antibody response can be quite distinct resulting in different levels of therapeutic activity. METHODOLOGY/PRINCIPAL FINDINGS: Using plasmid-based immunization against the proto-oncogene HER-2 as a model, we have demonstrated that affinity-selected epitope mimetics (mimotopes) can provide a defined signature of a polyclonal antibody response. Further, using novel computer algorithms that we have developed, these mimotopes can be used to predict epitope targets. CONCLUSIONS/SIGNIFICANCE: By combining our novel strategy with existing methods of epitope prediction based on physical properties of an individual protein, we believe that this method offers a robust method for characterizing the breadth of epitope-specificity within a specific polyserum. This strategy is useful as a tool for monitoring immunity following vaccination and can also be used to define relevant epitopes for the creation of novel vaccines

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Bio-cultural refugia—Safeguarding diversity of practices for food security and biodiversity

    Get PDF
    Food security for a growing world population is high on the list of grand sustainability challenges, as is reducing the pace of biodiversity loss in landscapes of food production. Here we shed new insights on areas that harbor place specific social memories related to food security and stewardship of biodiversity. We call them bio-cultural refugia. Our goals are to illuminate how bio-cultural refugia store, revive and transmit memory of agricultural biodiversity and ecosystem services, and how such social memories are carried forward between people and across cohorts. We discuss the functions of such refugia for addressing the twin goals of food security and biodiversity conservation in landscapes of food production. The methodological approach is first of its kind in combining the discourses on food security, social memory and biodiversity management. We find that the rich biodiversity of many regionally distinct cultural landscapes has been maintained through a mosaic of management practices that have co-evolved in relation to local environmental fluctuations, and that such practices are carried forward by both biophysical and social features in bio-cultural refugia including; genotypes, artifacts, written accounts, as well as embodied rituals, art, oral traditions and self-organized systems of rules. Combined these structure a diverse portfolio of practices that result in genetic reservoirs-source areas-for the wide array of species, which in interplay produce vital ecosystem services, needed for future food security related to environmental uncertainties, volatile financial markets and large scale conflicts. In Europe, processes related to the large-scale industrialization of agriculture threaten such bio-cultural refugia. The paper highlights that the dual goals to reduce pressures from modern agriculture on biodiversity, while maintaining food security, entails more extensive collaboration with farmers oriented toward ecologically sound practices. (C) 2013 Elsevier Ltd. All rights reserved

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Assessing the engineering, environmental and economic aspects of repowering onshore wind energy

    No full text
    As onshore wind farms approach the end of their life, critical decisions about their future become imperative. Wind turbine repowering projects encounter multifaceted challenges across economic, engineering, environmental, and social domains. This study critically examines the state of the art in onshore wind repowering on a global scale. The potential of repowering onshore wind to achieve three key objectives is investigated: enhancing energy output, extending operational life, and contributing to net-zero targets. The analyses reveal significant increases in generation capacity through repowering, with benefits extending to local economies and emissions reduction. Additionally, technological advancements such as variable hub heights and wind turbine classes offer optimization opportunities for repowering projects. Challenges such as time-limited consents and financial disincentives prompt an examination of the complexities inherent in these issues and the opportunities they present. The study analyses the complicated interactions of engineering, environmental, and economic factors on a global scale. To overcome these challenges, the study recommends implementing stable financial support mechanisms, streamlining regulations through adaptive energy laws, and enhancing public engagement. Emphasising sustainable practices, the paper calls for clear legislative frameworks focused on wind turbine recyclability and collaborative efforts between the wind industry and communities to ensure environmentally responsible repowering projects

    How to reduce a genome? ALife as a tool to teach the scientific method to school pupils

    Get PDF
    International audienceWhen Artificial Life approaches are used with school pupils, it is generally to help them learn about the dynamics of living systems and/or their evolution. Here, we propose to use it to teach the scientific and experimental method, rather than biology. We experimented this alternative pedagogical usage during the 5 days internship of a young schoolboy - Quentin - with astonishing results. Indeed, not only Quentin easily grasped the principles of science and experiments but meanwhile he also collected very interesting results that shed a new light on the evolution of genome size and, more precisely, on genome streamlining. This article summarizes this success story and analyzes its results on both educational and scientific perspectives
    • …
    corecore