42 research outputs found

    Phosphorylation of a neuronal-specific β-tubulin isotype

    Get PDF
    Adult rats were intracraneally injected with [32P] phosphate and brain microtubules isolated. The electrophoretically purified, in vivo phospholabeled, beta-tubulin was digested with the V8-protease and the labeled peptide purified by reversed-phase liquid chromatography. Its amino acid sequence corresponds to the COOH-terminal sequence of a minor neuronal beta 3-tubulin isoform from chicken and human. The phosphorylation site was at serine 444. A synthetic peptide with sequence EMYEDDEEESESQGPK, corresponding to that of the COOH terminus of beta 3-tubulin, was efficiently phosphorylated in vitro by casein kinase II at the same serine 444. The functional meaning of tubulin phosphorylation is still unclear. However, the modification of the protein takes place after microtubule assembly, and phosphorylated tubulin is mainly present in the assembled microtubule protein fraction

    Matrix metalloproteinase-8 deficiency increases joint inflammation and bone erosion in the K/BxN serum-transfer arthritis model

    Get PDF
    Introduction Rheumatoid arthritis is an autoimmune disease in which joint inflammation leads to progressive cartilage and bone erosion. Matrix metalloproteinases (MMPs) implicated in homeostasis of the extracellular matrix play a central role in cartilage degradation. However, the role of specific MMPs in arthritis pathogenesis is largely unknown. The aim of the present study was to investigate the role of Mmp-8 (collagenase-2) in an arthritis model. Methods Arthritis was induced in Mmp8-deficient and wildtype mice by K/BxN serum transfer. Arthritis severity was measured by a clinical index and ankle sections were scored for synovial inflammation, cartilage damage and bone erosion. cDNA microarray analysis, real-time PCR and western blot were performed to identify differential changes in gene expression between mice lacking Mmp8 and controls. Results Mmp8 deficiency increased the severity of arthritis, although the incidence of disease was similar in control and deficient mice. Increased clinical score was associated with exacerbated synovial inflammation and bone erosion. We also found that the absence of Mmp8 led to increased expression of IL-1β, pentraxin-3 (PTX3) and prokineticin receptor 2 (PROKR2) in arthritic mice joints. Conclusions Lack of Mmp-8 is accompanied by exacerbated synovial inflammation and bone erosion in the K/BxN serum-transfer arthritis model, indicating that this Mmp has a protective role in arthritisThe present work was supported by grants PI04/0783, PI08/0038, RETICS Program, RD08/0075 (RIER), all from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III within the VI PN de I+D+I 2008-2011 with participation of FEDER funds (European Union). SG is supported by Xunta de GaliciaS

    Cardiac fibroblasts display endurance to ischemia, high ROS control and elevated respiration regulated by the JAK2/STAT pathway

    Get PDF
    Cardiac fibroblast; Cellular respiration; SurvivalFibroblast cardíac; Respiració cel·lular; SupervivènciaFibroblasto cardiaco; Respiración celular; SupervivenciaCardiovascular diseases are the leading cause of death globally and more than four out of five cases are due to ischemic events. Cardiac fibroblasts (CF) contribute to normal heart development and function, and produce the post-ischemic scar. Here, we characterize the biochemical and functional aspects related to CF endurance to ischemia-like conditions. Expression data mining showed that cultured human CF (HCF) express more BCL2 than pulmonary and dermal fibroblasts. In addition, gene set enrichment analysis showed overrepresentation of genes involved in the response to hypoxia and oxidative stress, respiration and Janus kinase (JAK)/Signal transducer and Activator of Transcription (STAT) signaling pathways in HCF. BCL2 sustained survival and proliferation of cultured rat CF, which also had higher respiration capacity and reactive oxygen species (ROS) production than pulmonary and dermal fibroblasts. This was associated with higher expression of the electron transport chain (ETC) and antioxidant enzymes. CF had high phosphorylation of JAK2 and its effectors STAT3 and STAT5, and their inhibition reduced viability and respiration, impaired ROS control and reduced the expression of BCL2, ETC complexes and antioxidant enzymes. Together, our results identify molecular and biochemical mechanisms conferring survival advantage to experimental ischemia in CF and show their control by the JAK2/STAT signaling pathway. The presented data point to potential targets for the regulation of cardiac fibrosis and also open the possibility of a general mechanism by which somatic cells required to acutely respond to ischemia are constitutively adapted to survive it.This research was funded by Ministerio de Ciencia e Innovación (MICINN), Gobierno de España, grant numbers SAF2013-44942-R and PID2019-104509RB-I00 to DS; Fundació La Marató TV3, grant number 20153810 to D.S; A.B. holds a contract from Fundació La Marató TV3 and IRBLleida/Diputació de Lleida; Generalitat de Catalunya, (AGAUR) grant number 2017SGR996 to DS; PP-G Laboratory support was obtained through research grants from MICINN (SAF2017/88275R) and CIBERONC (CB16/12/00334); JI and MR-M Laboratory support was obtained from Instituto de Salud Carlos III (ISCIII-FIS) grant PI19-01196; AZ Laboratory support was obtained through research grants from MICINN (PID2019-106209RB-I00), and the Generalitat de Catalunya, (AGAUR) grant number 2017SGR1015. AZ is a recipient of an ICREA ‘Academia’ Award (Generalitat de Catalunya). We gratefully acknowledge institutional funding from the MINECO through the Centres of Excellence Severo Ochoa Award, and from the CERCA Programme of the Generalitat de Catalunya

    Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF

    Get PDF
    Several pathological processes, such as sepsis and inflammatory bowel disease (IBD), are associated with impairment of intestinal epithelial barrier. Here, we investigated the role of matrix metalloproteinase MMP13 in these diseases. We observed that MMP13(-/-) mice display a strong protection in LPS- and caecal ligation and puncture-induced sepsis. We could attribute this protection to reduced LPS-induced goblet cell depletion, endoplasmic reticulum stress, permeability and tight junction destabilization in the gut of MMP13(-/-) mice compared to MMP13(+/+) mice. Both in vitro and in vivo, we found that MMP13 is able to cleave pro-TNF into bioactive TNF. By LC-MS/MS, we identified three MMP13 cleavage sites, which proves that MMP13 is an alternative TNF sheddase next to the TNF converting enzyme TACE. Similarly, we found that the same mechanism was responsible for the observed protection of the MMP13(-/-) mice in a mouse model of DSS-induced colitis. We identified MMP13 as an important mediator in sepsis and IBD via the shedding of TNF. Hence, we propose MMP13 as a novel drug target for diseases in which damage to the gut is essential

    The prognostic impact of minimal residual disease in patients with chronic lymphocytic leukemia requiring first-line therapy.

    Get PDF
    A proportion of patients with chronic lymphocytic leukemia achieve a minimal residual disease negative status after therapy. We retrospectively evaluated the impact of minimal residual disease on the outcome of 255 consecutive patients receiving any front-line therapy in the context of a detailed prognostic evaluation, including assessment of IGHV, TP53, NOTCH1 and SF3B1 mutations. The median follow-up was 73 months (range, 2-202) from disease evaluation. The median treatment-free survival durations for patients achieving a complete response without or with minimal residual disease, a partial response and no response were 76, 40, 11 and 11 months, respectively (P<0.001). Multivariate analysis revealed that three variables had a significant impact on treatment-free survival: minimal residual disease (P<0.001), IGHV status (P<0.001) and β2-microglobulin levels (P=0.012). With regards to overall survival, factors predictive of an unfavorable outcome were minimal residual disease positivity (P=0.014), together with advanced age (P<0.001), unmutated IGHV status (P=0.001), TP53 mutations (P<0.001) and elevated levels of β2-microglobulin (P=0.003). In conclusion, for patients requiring front-line therapy, achievement of minimal residual disease negativity is associated with significantly prolonged treatment-free and overall survival irrespective of other prognostic markers or treatment administered

    The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia

    Full text link
    Mutations or deregulated expression of the components of the spliceosome can influence the splicing pattern of several genes and contribute to the development of tumors. In this context, we report that the spliceosome modulator sudemycin induces selective cytotoxicity in primary chronic lymphocytic leukemia (CLL) cells when compared with healthy lymphocytes and tumor cells from other B-lymphoid malignancies, with a slight bias for CLL cases with mutations in spliceosome-RNA processing machinery. Consistently, sudemycin exhibits considerable antitumor activity in NOD/SCID/IL2Rγ-/- (NSG) mice engrafted with primary cells from CLL patients. The antileukemic effect of sudemycin involves the splicing modulation of several target genes important for tumor survival, both in SF3B1-mutated and -unmutated cases. Thus, the apoptosis induced by this compound is related to the alternative splicing switch of MCL1 toward its proapoptotic isoform. Sudemycin also functionally disturbs NF-κB pathway in parallel with the induction of a spliced RELA variant that loses its DNA binding domain. Importantly, we show an enhanced antitumor effect of sudemycin in combination with ibrutinib that might be related to the modulation of the alternative splicing of the inhibitor of Btk (IBTK). In conclusion, we provide first evidence that the spliceosome is a relevant therapeutic target in CLL, supporting the use of splicing modulators alone or in combination with ibrutinib as a promising approach for the treatment of CLL patients

    Insight into genetic predisposition to chronic lymphocytic leukemia from integrative epigenomics.

    Get PDF
    Genome-wide association studies have provided evidence for inherited genetic predisposition to chronic lymphocytic leukemia (CLL). To gain insight into the mechanisms underlying CLL risk we analyze chromatin accessibility, active regulatory elements marked by H3K27ac, and DNA methylation at 42 risk loci in up to 486 primary CLLs. We identify that risk loci are significantly enriched for active chromatin in CLL with evidence of being CLL-specific or differentially regulated in normal B-cell development. We then use in situ promoter capture Hi-C, in conjunction with gene expression data to reveal likely target genes of the risk loci. Candidate target genes are enriched for pathways related to B-cell development such as MYC and BCL2 signalling. At 14 loci the analysis highlights 63 variants as the probable functional basis of CLL risk. By integrating genetic and epigenetic information our analysis reveals novel insights into the relationship between inherited predisposition and the regulatory chromatin landscape of CLL

    Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia

    Get PDF
    Chronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and -exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in different subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the CLL transcriptional landscape with unprecedented resolution. We detected thousands of transcriptional elements differentially expressed between the CLL and normal B cells, including protein-coding genes, noncoding RNAs, and pseudogenes. Transposable elements are globally derepressed in CLL cells. In addition, two thousand genes-most of which are not differentially expressed-exhibit CLL-specific splicing patterns. Genes involved in metabolic pathways showed higher expression in CLL, while genes related to spliceosome, proteasome, and ribosome were among the most down-regulated in CLL. Clustering of the CLL samples according to RNA-seq derived gene expression levels unveiled two robust molecular subgroups, C1 and C2. C1/C2 subgroups and the mutational status of the immunoglobulin heavy variable (IGHV) region were the only independent variables in predicting time to treatment in a multivariate analysis with main clinico-biological features. This subdivision was validated in an independent cohort of patients monitored through DNA microarrays. Further analysis shows that B-cell receptor (BCR) activation in the microenvironment of the lymph node may be at the origin of the C1/C2 differences

    Genetic predisposition to chronic lymphocytic leukemia is mediated by a BMF super-enhancer polymorphism

    Get PDF
    Chronic lymphocytic leukemia (CLL) is an adult B cell malignancy. Genome-wide association studies show that variation at 15q15.1 influences CLL risk. We deciphered the causal variant at 15q15.1 and the mechanism by which it influences tumorigenesis. We imputed all possible genotypes across the locus and then mapped highly associated SNPs to areas of chromatin accessibility, evolutionary conservation, and transcription factor binding. SNP rs539846 C>A, the most highly associated variant (p = 1.42 × 10(-13), odds ratio = 1.35), localizes to a super-enhancer defined by extensive histone H3 lysine 27 acetylation in intron 3 of B cell lymphoma 2 (BCL2)-modifying factor (BMF). The rs539846-A risk allele alters a conserved RELA-binding motif, disrupts RELA binding, and is associated with decreased BMF expression in CLL. These findings are consistent with rs539846 influencing CLL susceptibility through differential RELA binding, with direct modulation of BMF expression impacting on anti-apoptotic BCL2, a hallmark of oncogenic dependency in CLL

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    corecore