145 research outputs found

    Families index theorem in supersymmetric WZW model and twisted K-theory: The SU(2) case

    Full text link
    The construction of twisted K-theory classes on a compact Lie group is reviewed using the supersymmetric Wess-Zumino-Witten model on a cylinder. The Quillen superconnection is introduced for a family of supercharges parametrized by a compact Lie group and the Chern character is explicitly computed in the case of SU(2). For large euclidean time, the character form is localized on a D-brane.Comment: Version 2: Essentially simplified proof of the main result using a map from twisted K-theory to gerbes modulo the twisting gerbe; references added + minor correction

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Prospects for Studies of Stellar Evolution and Stellar Death in the JWST Era

    Full text link
    I review the prospects for studies of the advanced evolutionary stages of low-, intermediate- and high-mass stars by the JWST and concurrent facilities, with particular emphasis on how they may help elucidate the dominant contributors to the interstellar dust component of galaxies. Observations extending from the mid-infrared to the submillimeter can help quantify the heavy element and dust species inputs to galaxies from AGB stars. JWST's MIRI mid-infrared instrument will be so sensitive that observations of the dust emission from individual intergalactic AGB stars and planetary nebulae in the Virgo Cluster will be feasible. The Herschel Space Observatory will enable the last largely unexplored spectral region, the far-IR to the submillimeter, to be surveyed for new lines and dust features, while SOFIA will cover the wavelength gap between JWST and Herschel, a spectral region containing important fine structure lines, together with key water-ice and crystalline silicate bands. Spitzer has significantly increased the number of Type II supernovae that have been surveyed for early-epoch dust formation but reliable quantification of the dust contributions from massive star supernovae of Type II, Type Ib and Type Ic to low- and high-redshift galaxies should come from JWST MIRI observations, which will be able to probe a volume over 1000 times larger than Spitzer.Comment: 24 pages, 19 figures. To appear in `Astrophysics in the Next Decade: JWST and Concurrent Facilities' (JWST Conference Proceedings), edited by H. A. Thronson, M. Stiavelli and A. G. G. M. Tielens; Springer Series: Astrophysics and Space Science Proceeding
    corecore