37 research outputs found

    Global Production Increased by Spatial Heterogeneity in a Population Dynamics Model

    Get PDF
    Spatial and temporal heterogeneity are often described as important factors having a strong impact on biodiversity. The effect of heterogeneity is in most cases analyzed by the response of biotic interactions such as competition of predation. It may also modify intrinsic population properties such as growth rate. Most of the studies are theoretic since it is often difficult to manipulate spatial heterogeneity in practice. Despite the large number of studies dealing with this topics, it is still difficult to understand how the heterogeneity affects populations dynamics. On the basis of a very simple model, this paper aims to explicitly provide a simple mechanism which can explain why spatial heterogeneity may be a favorable factor for production.We consider a two patch model and a logistic growth is assumed on each patch. A general condition on the migration rates and the local subpopulation growth rates is provided under which the total carrying capacity is higher than the sum of the local carrying capacities, which is not intuitive. As we illustrate, this result is robust under stochastic perturbations

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link

    Plant functional and taxonomic diversity in European grasslands along climatic gradients

    Get PDF
    Aim: European grassland communities are highly diverse, but patterns and drivers of their continental-scale diversity remain elusive. This study analyses taxonomic and functional richness in European grasslands along continental-scale temperature and precipitation gradients. Location: Europe. Methods: We quantified functional and taxonomic richness of 55,748 vegetation plots. Six plant traits, related to resource acquisition and conservation, were analysed to describe plant community functional composition. Using a null-model approach we derived functional richness effect sizes that indicate higher or lower diversity than expected given the taxonomic richness. We assessed the variation in absolute functional and taxonomic richness and in functional richness effect sizes along gradients of minimum temperature, temperature range, annual precipitation, and precipitation seasonality using a multiple general additive modelling approach. Results: Functional and taxonomic richness was high at intermediate minimum temperatures and wide temperature ranges. Functional and taxonomic richness was low in correspondence with low minimum temperatures or narrow temperature ranges. Functional richness increased and taxonomic richness decreased at higher minimum temperatures and wide annual temperature ranges. Both functional and taxonomic richness decreased with increasing precipitation seasonality and showed a small increase at intermediate annual precipitation. Overall, effect sizes of functional richness were small. However, effect sizes indicated trait divergence at extremely low minimum temperatures and at low annual precipitation with extreme precipitation seasonality. Conclusions: Functional and taxonomic richness of European grassland communities vary considerably over temperature and precipitation gradients. Overall, they follow similar patterns over the climate gradients, except at high minimum temperatures and wide temperature ranges, where functional richness increases and taxonomic richness decreases. This contrasting pattern may trigger new ideas for studies that target specific hypotheses focused on community assembly processes. And though effect sizes were small, they indicate that it may be important to consider climate seasonality in plant diversity studies

    Species Richness and the Temporal Stability of Biomass Production: A New Analysis of Recent Biodiversity Experiments

    No full text
    The relationship between biological diversity and ecological stability has fascinated ecologists for decades. Determining the generality of this relationship, and discovering the mechanisms that underlie it, are vitally important for ecosystem management. Here, we investigate how species richness affects the temporal stability of biomass production by reanalyzing 27 recent biodiversity experiments conducted with primary producers. We find that, in grasslands, increasing species richness stabilizes whole-community biomass but destabilizes the dynamics of constituent populations. Community biomass is stabilized because species richness impacts mean biomass more strongly than its variance. In algal communities, species richness has a minimal effect on community stability because richness affects the mean and variance of biomass nearly equally. Using a new measure of synchrony among species, we find that for both grasslands and algae, temporal correlations in species biomass are lower when species are grown together in polyculture than when grown alone in monoculture. These results suggest that interspecific interactions tend to stabilize community biomass in diverse communities. Contrary to prevailing theory, we found no evidence that species’ responses to environmental variation in monoculture predicted the strength of diversity’s stabilizing effect. Together, these results deepen our understanding of when and why increasing species richness stabilizes community biomass

    Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments

    No full text
    The relationship between biological diversity and ecological stability has fascinated ecologists for decades. Determining the generality of this relationship, and discovering the mechanisms that underlie it, are vitally important for ecosystem management. Here, we investigate how species richness affects the temporal stability of biomass production by re-analyzing 27 recent biodiversity experiments conducted with primary producers. We find that, in grasslands, increasing species richness stabilizes whole-community biomass but destabilizes the dynamics of constituent populations. Community biomass is stabilized because species richness impacts mean biomass more strongly than its variance. In algal communities, species richness has a minimal effect on community stability because richness affects the mean and variance of biomass nearly equally. Using a new measure of synchrony among species, we find that for both grasslands and algae, temporal correlations in species biomass are lower when species are grown together in polyculture than when grown alone in monoculture. These results suggest that interspecific interactions tend to stabilize community biomass in diverse communities. Contrary to prevailing theory, we found no evidence that species' responses to environmental variation in monoculture predicted the strength of diversity's stabilizing effect. Together, these results deepen our understanding of when and why increasing species richness stabilizes community biomass
    corecore