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ABSTRACT
Spatial and temporal heterogeneity are often described as important factors having a strong

impact on biodiversity. The effect of heterogeneity is in most cases analyzed by the response
of biotic interactions such as competition of predation. It may also modify intrinsic population
properties such as growth rate. Most of the studies are theoretic since it is often difficult to
manipulate spatial heterogeneity in practice. Despite the large number of studies dealing with this
topics, it is still difficult to understand how the heterogeneity affects populations dynamics. On
the basis of a very simple model, this paper aims to explicitly provide a simple mechanism which
can explain why spatial heterogeneity may be a favorable factor for production. We consider a two
patch model and a logistic growth is assumed on each patch. A general condition on the migration
rates and the local subpopulation growth rates is provided under which the total carrying capacity
is higher than the sum of the local carrying capacities, which is not intuitive. As we illustrate, this
result is robust under stochastic perturbations.

1. INTRODUCTION

Heterogeneity has been recognized for a long time, in theoretical works, as a major
factor affecting population dynamics (Levin, 1976; Hanski, 1981). Nowadays, there are
more and more empirical evidences showing that spatial or temporal heterogeneities
affect the functioning of ecosystems (Cardinale et al., 2002). However, it still remains
difficult to understand how spatial variabilities of physical and chemical environmental
conditions may modify the functional roles of living organisms. Various effects are usu-
ally envisioned and among them are the increase of growth of a population (Auger and
Poggiale, 1996b; Poggiale, 1998), the possible explanations for the paradox of plankton
(Huissman and Weissing, 1999) and for the paradox of enrichment (Luckinbill, 1974;
Kooi et al., 1998) and more generally the fact that heterogeneity may lead to an in-
creased biodiversity (Pacala and Roughgarden, 1982). More precisely, heterogeneity
induces variabilities in the manner that individuals can feed or absorb there resources
and these changes at the individuals scale may affect the population growth in a pos-
itive or a negative way. For instance, the interaction between a prey population and
its predator can exhibit various response to the variability of environment induced by
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spatial or temporal heterogeneity (Bernstein et al., 1999; Scheffer and de Boer, 1995).
The functional response of a such interaction is known to be sensible to heterogeneity
as it has been shown in experimental and theoretical works (Arditi et al., 1991; Arditi
and Saı̈ah, 1992).

The impact of spatial or temporal heterogeneity on biodiversity is of great interest
nowadays since many human activities tend to decrease the heterogeneities, which could
result in a loss of biodiversity. Consequently, there is a urgent need of progress in the
understanding of the response of living populations to perturbations of heterogeneities.
Since it is not easy to manipulate spatial heterogeneity in experiments, lots of works are
based on modelling. Indeed, this approach allows to test some assumptions rather easily.
Moreover, a very simple model allowing detailed calculation permit also to understand
precisely the mechanism underlying the possibility of an increased production. In this
context, the present paper aims to provide a simple mathematical example from which the
exact mechanism can be extracted, as described hereafter. Let us consider a population
living in an habitat constituted by two patches, in which production rates vary according
to the spatial location leading to a spatial heterogeneity. The individuals displace in this
habitat, changing from one location to the other one. There are many natural examples
which can be approximated by a such simplification. Among them, we suggest the
zooplankton diel migration along the column water (Andersen, 1991). In this example,
the individuals can eat the phytoplankton produced during the day at the surface layer and
hide from their own predators in the bottom layer. We can conclude that the surface layer
corresponds to a higher productive layer since food is available there. The second main
assumption of the mechanism is that the individuals move preferentially from the good
patch to the bad one. This behavior may for instance be explained by a high predation
pressure on the good patch, leading the individuals to leave. The individuals come back
on the good patch in order to feed. It follows from these assumptions, according to our
model, that individuals are produced faster on the patch where they are less abundant.
Since they are less abundant, the carrying capacity may be reached after a longer time,
which leads to a higher production of individuals.

The paper is organized as follows. In the next section, we briefly explain the aggre-
gation techniques which shall facilitate the study of the model and references are given
for more details. Then we describe in details the model which will be used hereafter. The
following section is devoted to the derivation of conditions for which the total number
of individuals reached at equilibrium is higher when heterogeneity taken into account
than in the homogeneous case. Next, we perform a numerical analysis to check if our
result is robust under two types of stochastic perturbations which represent (i) environ-
mental fluctuations and (ii) intrinsic individual variability. We end the paper by a short
conclusion.

2. AGGREGATION METHODS: TO DEAL WITH ECOLOGICAL
COMPLEXITY

Aggregation methods have been introduced in ecology by Iwasa et al. (1987, 1989).
It concerns the possibility to write simplified models when the level of organization
of interest is changed. For instance, at the ecosystem level, it is maybe not necessary
to deal with all the details describing the individuals levels. In this case, the detailed
description is made by microvariables and the aim is to describe the macrolevel with



macrovariables. Generally, since we omit details, the number of macrovariables is much
lower than the number of microvariables. The aggregation methods permit to derive
objectives relationships between these variables (Auger and Poggiale, 1996a; Sanz and
Bravo de la Parra, 1998)

In Auger and Poggiale 1998 and Poggiale and Auger (1996), the authors provide and
illustrate a method based on Geometrical Singular Perturbation Theory and a theorem
of reduction given by Fenichel (1971, refer also to Wiggins, 1994), refer to Appendix A
for more details. Our version is based on the paper from Sakamoto (1990).

3. DESCRIPTION OF THE MODEL

We consider a two patches model on which the population grows logistically. Let Ni

be the amount of individuals on patch i , ri is the intrinsic growth rate of the population
on patch i and Ki is the corresponding carrying capacity. Individuals can move randomly
from patch to patch and let us denote mi j as the displacement rate from patch j to patch i .
Furthermore, we assume that the displacement of individuals are much faster than the de-
mographic process. This assumption is described in the model by the mean of a small di-
mensionless parameter ε, so called time scale parameter. The model then reads as follows:

d N1

dτ
= m12 N2 − m21 N1 + εr1 N1

(
1 − N1

K1

)
d N2

dτ
= m21 N1 − m12 N2 + εr2 N2

(
1 − N2

K2

)
We denote N the total population density: N = N1 + N2. If we first assume that the

displacements do not occur in this system (case m12 = m21 = 0), then the subpopulations
exhibit logistic growth. After a transient time, the abundance of the subpopulation on
patch i reaches an equilibrium value Ki . As a consequence, the total number N of
individuals shall reach the value K1 + K2. For the sake of simplicity, we assume in
this paper that K1 = K2. We show in the next section that, when the displacements
occur, the total number of individuals reaches a larger value than 2K1, provided that the
subpopulations intrinsic growth rates are not the same on each patch (r1 �= r2), that is
the global system is spatially heterogeneous.

4. CONDITIONS FOR AN INCREASED PRODUCTION

4.1. Reduction of the Model to a One Dimensional Logistic Equation

We now take advantage of the different time scales to simplify the previous two
dimensional system into a one dimensional model which exhibits the same dynamics
for the total population abundance N . Since the displacement are fast, the number of
individuals on each patch rapidly reaches a fixed proportion of the total number of
individuals in the population. We denote by ui the corresponding proportion on patch i ,
that is ui = Ni/N . Thus the amount of individuals on each patch reads:

N ∗
1 = m12

m12 + m21

N = u1 N

N ∗
2 = m21

m12 + m21

N = u2 N



This equilibrium is obtained by vanishing the differential equations when ε = 0. It
permits to build a one dimensional model for the total population

d N

dτ
= ε

(
r1u1 N

(
1 − u1 N

K1

)
+ r2u2 N

(
1 − u2 N

K2

))
This model can be written as a logistic equation:

d N

dt
= r N

(
1 − N

K

)
where t = ετ is a change of time unit and the parameters r and K are defined as follows:

r = r1u1 + r2u2 and K = K1 K2(r1u1 + r2u2)

K2r1u2
1 + K1r2u2

2

For the sake of simplicity, we shall consider the particular case where K1 = K2.
The more general case would lead to similar results but with more calculations. This
assumption permits to simplify the total carrying capacity of the domain, that is the
maximum value reachable by the number of individuals.

K = K1(r1u1 + r2u2)

r1u2
1 + r2u2

2

4.2. Properties of Spatial Homogeneity: r1 = r2

Let us first consider the case of a homogeneous environment, r1 = r2. It then follows
that r = r1 and K = K1/(u2

1 + u2
2). Since u2

1 + u2
2 is a number comprised between 0.5

and 1 when u1 is a proportion, it follows that K ≤ 2K1. There is a particular case when
the displacement rates m12 and m21 are equal. Indeed, in this case, the subdivision of the
population into two subpopulations is arbitrary and this leads to K = 2K1, that is there
is no effect. However, if the displacement rates are not the same, then the total carrying
capacity is lower than the sum of the local carrying capacity. In the following subsection,
we show that this result can be reversed when the growth rates on each patch are not
the same, that is in the heterogeneous case. Moreover, the range of the displacements
parameters where the total carrying capacity is higher than the sum of the local carrying
capacities is enlarged when the heterogeneity is stronger.

4.3. Increased Production by Spatial Heterogeneity: r1 �= r2

We prove here that when the environment is heterogeneous, K can be higher than
2K1. As it can be shown by a straightforward calculation (see appendix B), K is larger
than 2K1 if and only if the following inequality is satisfied:

2(r1 + r2)u2
1 − (3r2 + r1)u1 + r2 < 0

The left-hand side of this inequality is a quadratic term with respect to the proportion
of individuals in patch 1, u1. This quadratic term must be negative which means that u1

must be between the roots of the associated quadratic equation. The corresponding roots
are:

u+
1 = 3r2 + r1 + √|r1 − r2|

4(r1 + r2)
and u−

1 = 3r2 + r1 − √|r1 − r2|
4(r1 + r2)



Notice that the absolute values of the displacements rates are not really important for
our study, since only m12/m21 appears in the calculations, by the mean of u1 = 1

1+ m12
m21

.

Thus only the ratio m21/m12 is of interest in our case. The range of the parameter u1 for
which the production is increased by heterogeneity is:

u+
1 − u−

1 = |r1 − r2|
2(r1 + r2)

Thus, if r1 �= r2 then there exists u1 such that K > 2K1. Moreover, the range of the
parameter u1 for which this inequality holds increases with |r1 − r2|. As a consequence,
even if, in the heterogeneous case, we can have K < 2K1, this inequality becomes rare
in the case of strong heterogeneity. Since we are considering the case r1 �= r2, let us
assume that r1 > r2 (the opposite case would be completely similar). Then, we get:

u+
1 = 1

2
and u−

1 = r2

r1 + r2

It follows that the total carrying capacity is larger than the sum of the local carrying
capacities if and only if we have the following inequalities:

r2

r1 + r2

< u1 = m12

m12 + m21

<
1

2

which is equivalent to:

1 <
m21

m12

<
r1

r2

This last inequalities show that (i) the total carrying capacity can be enlarged only if
the local growth rates are different and (ii) the carrying capacity is enlarged when the ratio
of the displacement rate from patch 1 to patch 2 over the displacement rate from patch 2
to patch 1 is lower than the ratio of the local growth rate r1 over the local growth rate r2.

Our result is illustrated on Figures 1 and 2. Figures 1 shows a comparison between the
two dimensional model and the aggregated model. Figures 2 illustrates the enhancement
of carrying capacity when the displacement of individuals occur. On this figure, we can
see that the total carrying capacity is higher than the sum of the local ones. The parameter
values for numerical simulations are given in Table 1.

5. ROBUSTNESS OF THE RESULTS UNDER RANDOM
PERTURBATIONS

In this section, we randomly perturb the above dynamical system in order to check
the robustness of the results. Two different kind of perturbations are considered. The
first one is an additive white noise which simulates the environmental variability. The
second one describes an individual variability through random growth rates.

5.1. Environmental Variability

The perturbed processes reads:

d N1 = m12 N2dτ − m21 N1dτ + εr1 N1

(
1 − N1

K1

)
+ δ1dW1

d N2 = m21 N1dτ − m12 N2dτ + εr2 N2

(
1 − N2

K2

)
+ δ2dW2



Figure 1. Comparison the aggregated model and the sum of the local densities obtained with the

complete model. The blue curve illustrates the simulation with the aggregated model while the green

one has been obtained by summing the variables solved from the complete two dimensional system.

Both curves are very close when ε is small enough. The parameter values are given in Table 1.

where W1 and W2 are independent Wiener processes, and δi , i = 1, 2 are small numerical
parameters controlling the strength of the perturbation. We consider here the effect of
small perturbations i.e. the perturbing effect induced by δi dWi is small compared to
the deterministic part of the system. The perturbation of the dynamical system by a
Wiener process can be considered as an environmental variability that should affect the
population dynamics. This perturbation does not modify the previous result (Figure 3).
As it can be seen on this figure, the aggregated model still well approximates the total
density of the complete perturbed model. This is the consequence of a known result
shown by Berglund and Gentz (2003).

5.2. Random Growth Rates

Another way to introduce variability, is to consider random perturbations according to
individuals variations themselves. In the present work , we considered that the individual
variations can be described as perturbations of the growth rates. These rates ri , i = 1, 2,

are taken as real random variables with uniform distributions on supports [ai ; bi ] i = 1, 2
such that the expectation of r1 is larger than the expectation of r2:

E(r1) = 10, [a1; b1] = [0; 20]

E(r2) = 1, [a2; b2] = [0; 2]



Figure 2. Comparison between the simulations obtained with and without migrations. The blue curve

results from the complete model. The green curve is obtained by vanishing the migration rates in order

to describe the dynamics resulting from the juxtaposition of two homogeneous environment and by

summing the local densities. The total carrying capacity with migrations is higher that the sum of the

local carrying capacities. The parameter values are given in Table 1.

Table 1. List of parameters with their definitions, their notations and their

numerical values used in the simulations

Name of the Value of the

Definition of the parameter parameter parameter

Growth rate of subpopulation 1 r1 10

Growth rate of subpopulation 2 r2 1

Carrying capacity on patch 1 K1 50

Carrying capacity on patch 2 K2 50

Migration rate from patch 1 to 2 m21 3

Migration rate from patch 2 to 1 m12 1

Time scale factor ε 0.1

Initial condition for density on patch 1 N1(0) 10

Initial condition for density on patch 2 N2(0) 10

The variances has been chosen in a such manner that the support of r2 belongs to the
support of r1. This means that the probability that r1 ≤ r2 is not negligible. The other
parameters are still the same as those given in table 1. According to the previous section,
when r1 ≤ r2 then the result fails, that is the total carrying capacity is smaller than the
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Figure 3. Comparison between the aggregated model and simulations of the random perturbed dy-

namical system (Wiener process, δ1 = δ2 = 3). The red line draws the aggregated model. The black

lines represent a variability interval calculated over 100 simulations. At time t , the lower bound is the

0.025-quantile and the upper bound is the 0.975-quantile. The blue dashed line is the mean trajectory

of 100 simulations.
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Figure 4. Comparison between the aggregated model and simulations of the random dynamical system

when growth rates are random variables. The red line draws the aggregated model. The black lines

represent a variability interval calculated over 100 simulations. At time t , the lower bound is the 0.025-

quantile and the upper bound is the 0.975-quantile. The blue dashed line is the mean trajectory of 100

simulations.



sum of the local ones. Our numerical simulation aims to illustrate what happens when r1

is sometimes lower than r2 with random occurences. The result is illustrated on Figure
4 and shows that the solution of the aggregated model remains close to the total density
obtained with the complete perturbed model.

6. CONCLUSION

In this paper, we have shown that the number of individuals in a heterogeneous envi-
ronment may be larger than what it should be in an equivalent homogeneous environment.
More precisely, the carrying capacity of an given environment may be enlarged by spatial
heterogeneity. This has been shown on a particular simple model. The simplicity of our
model permitted to deal with a complete description of the conditions under which our
result is valid.

It is usually recognized that production in natural environment is larger than
production obtained in experiments. However, it is really difficult to develop experi-
ments to test our result. It is then necessary to develop theoretical tools to understand
the effect of heterogeneity on biological processes. One of the interest of such tools
can reside in their simplicity. Moreover, our explanations are based on the mathematical
expressions obtained in the result derivation. We shown that in a homogeneous environ-
ment, the total carrying capacity is generally lower than the sum of the local carrying
capacities while this result can be inverted when heterogeneity occurs. Furthermore,
the range parameter for which the total carrying capacity is enlarged is larger when the
heterogeneity is stronger.

Finally, we illustrated by numerical simulations that the previous result is robust under
stochastic perturbations. Two different stochastic perturbations have been considered.
The first one aimed to describe an environmental variability and is formulated by an
additive white noise. The second one dealt with the individual variability of the growth
rate and it has been described by a uniform random process added to the local growth
rates. In both cases, we saw that the one dimensional not perturbed aggregated model is
still a good approximation of the complete randomly perturbed model. It is known for
the first case of perturbation (environmental variability). It is a purely numeric result in
the second case.

APPENDIX A: SLOW – FAST SYSTEMS

Let us consider a slow – fast system:

dx

dt
= f (x, y, ε)

dy

dt
= εg(x, y, ε)

where ε is a small parameter and x and y are vectors in Rk1 and Rk2 respectively. We
assume that when ε = 0, there exists an invariant manifold M0 defined by the equilibrium
of the fast part:

M0 = {(x, y)/ f (x, y, 0) = 0}
We assume as well that this manifold is normally hyperbolic, which means that the

Jacobian matrix of the previous system at each point of M0 has exactly k2 eigenvalues



on the imaginary axis. If furthermore the other eigenvalues have a negative real part,
then M0 is an attracting set. It follows from these assumptions that for ε > 0 sufficiently
small, there exists an invariant manifold Mε close and diffeomorph to M0. The solutions
of the previous model in the vicinity of Mε are close to the solutions of the restriction
on Mε. We thus consider the restriction on the manifold Mε, which leads to a reduced
dimension. This procedure provides the aggregated model.

Moreover, it can be shown (Berglund and Gentz, 2003) that, as long as the invariant
manifold Mε is attracting, the trajectories starting in the vicinity of Mε stays around
Mε for an exponentially long time. This means that the sum of the randomly perturbed
equations of local densities may still be compared to the solution of the aggregated
model.

APPENDIX B: CONDITIONS FOR INCREASED CARRYING
CAPACITY

In this section, we derive a condition on u1 which, when satisfied, is equivalent to
K > K1 + K2. Let us recall that u2 = 1 − u1.

K > 2K1 ⇔ r1u1 + r2u2

r1u2
1 + r2u2

2

> 2

⇔ r1u1 + r2u2 > 2
(
r1u2

1 + r2u2
2

)
⇔ r1u1 + r2 − r2u1 > 2(r1u2

1 + r2 − 2r2u1 + r2u2
1)

⇔ 2
(
(r1 + r2)u2

1 − 2r2u1 + r2

) − (r1 − r2)u1 − r2 < 0

⇔ 2(r1 + r2)u2
1 − (3r2 + r1)u1 + r2 < 0

APPENDIX C: RANDOM PERTURBATIONS

Let:

d N i
t = fi

(
N 1

t , N 2
t

)
dt + δi dW i

t , i = 1, 2

be a stochastic dynamical system, where fi , i = 1, 2 are continuous functions of
(N 1

t , N 2
t ), W i , i = 1, 2 are independent Wiener processes and δi , i = 1, 2, are real

numbers. Integrating the above equation on the time interval [0; T ], the solution takes
the following form, which does not contain distributions:

N i
t = N i

0 +
∫ T

0

fi
(
N 1

s , N 2
s

)
ds + δi

(
W i

t − W i
0

)
, i = 1, 2

It’s proved that for arbitrary moments of time tn > tn−1 > · · · > t1 ≥ 0, the random
variables: (

Wtn − Wtn−1

)
,
(
Wtn−1

− Wtn−2

)
, . . . ,

(
Wt2 − Wt1

)
have a joint Gaussian distribution and that these increments are independent. Moreover,
we note that an increment (Wt − Ws) from time s to time t, s < t has a Gaussian
distribution with:

E(Wt − Ws) = 0, V (Wt − Ws) = E(Wt − Ws)2 = t − s



where E(·) denotes the expectation. If δi → 0, the processes N i
t converge in probability

to the solutions of the deterministic dynamical system, uniformly on every finite interval
[0, T ], for Lipschitz conditions on fi .

The integral of the solution can be solved by a suitable numerical integration scheme
(Runge-Kutta scheme). At each step of the calculus, the numerical solution of the equa-
tion is perturbed by adding a real number drawn from a Gaussian distribution of variance
δ2�t , where δ2�t is the numerical time increment multiplied by the squared δ parameter.
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