45 research outputs found

    Soledad

    Get PDF

    COMT and MAO-A Polymorphisms and Obsessive-Compulsive Disorder: A Family-Based Association Study

    Get PDF
    ObjectiveObsessive-compulsive disorder (OCD) is a common and debilitating psychiatric illness. Although a genetic component contributes to its etiology, no single gene or mechanism has been identified to the OCD susceptibility. the catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAO-A) genes have been investigated in previous OCD studies, but the results are still unclear. More recently, Taylor (2013) in a comprehensive meta-analysis of genetic association studies has identified COMT and MAO-A polymorphisms involved with OCD. in an effort to clarify the role of these two genes in OCD vulnerability, a family-based association investigation was performed as an alternative strategy to the classical case-control design.MethodsTransmission disequilibrium analyses were performed after genotyping 13 single-nucleotide polymorphisms (eight in COMT and five in MAO-A) in 783 OCD trios (probands and their parents). Four different OCD phenotypes (from narrow to broad OCD definitions) and a SNP x SNP epistasis were also analyzed.ResultsOCD, broad and narrow phenotypes, were not associated with any of the investigated COMT and MAO-A polymorphisms. in addition, the analyses of gene-gene interaction did not show significant epistatic influences on phenotype between COMT and MAO-A.ConclusionsThe findings do not support an association between DSM-IV OCD and the variants of COMT or MAO-A. However, results from this study cannot exclude the contribution of these genes in the manifestation of OCD. the evaluation of broader spectrum phenotypes could help to understand the role of these and other genes in the pathophysiology of OCD and its spectrum disorders.Brazilian governmental agenciesConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundo de Aprimoramento Academico (FUAA-Grant for Academic Improvement)Department of Psychiatry University of São Paulo School of MedicineUniv São Paulo, Fac Med, Dept & Inst Psychiat, São Paulo, SP, BrazilUniv Fed Bahia, Serv Med Univ, Salvador, BA, BrazilUniv Pernambuco, Fac Ciencias Med, Recife, PE, BrazilUniversidade Federal de São Paulo, São Paulo, SP, BrazilBritish Columbia Mental Hlth & Addict Res Inst, Vancouver, BC, CanadaMassachusetts Gen Hosp, PNGU, Boston, MA 02114 USAMassachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USAUniv Calif San Francisco, Dept Psychiat, San Francisco, CA USAHosp Sick Children, Program Genet & Genome Biol, Toronto, ON M5G 1X8, CanadaUniv Michigan, Dept Psychiat, Ann Arbor, MI 48109 USASunnybrook Hlth Sci Ctr, Frederick W Thompson Anxiety Disorders Ctr, Toronto, ON M4N 3M5, CanadaUniv Toronto, Ctr Addict & Mental Hlth, Toronto, ON, CanadaUniv Fed Rio de Janeiro, Inst Psiquiatria, IPUB, Programa Ansiedade & Depressao, Rio de Janeiro, BrazilUniv São Paulo, Inst Math & Stat, Dept Stat, São Paulo, SP, BrazilUniversidade Federal de São Paulo, São Paulo, SP, BrazilCNPq: 573974/2008-0FAPESP: 2005/55628-08FAPESP: 2008/57896-8Web of Scienc

    The zCOSMOS 10k-Bright Spectroscopic Sample

    Get PDF
    We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed

    The XMM Cluster Survey: evolution of the velocity dispersion–temperature relation over half a Hubble time

    Get PDF
    We measure the evolution of the velocity dispersion–temperature (σv–TX) relation up to z = 1 using a sample of 38 galaxy clusters drawn from the XMM Cluster Survey. This work improves upon previous studies by the use of a homogeneous cluster sample and in terms of the number of high-redshift clusters included. We present here new redshift and velocity dispersion measurements for 12 z > 0.5 clusters observed with the Gemini Multi Object Spectographs instruments on the Gemini telescopes. Using an orthogonal regression method,we find that the slope of the relation is steeper than that expected if clusters were self-similar, and that the evolution of the normalization is slightly negative, but not significantly different from zero (σv ∝T0.86±0.14E(z)−0.37±0.33). We verify our results by applying our methods to cosmological hydrodynamical simulations. The lack of evolution seen in our data is consistent with simulations that include both feedback and radiative cooling

    Mass and environment as drivers of galaxy evolution in SDSS and zCOSMOS and the origin of the Schechter function

    Full text link
    We explore the inter-relationships between mass, star-formation rate and environment in the SDSS, zCOSMOS and other surveys. The differential effects of mass and environment are completely separable to z ~ 1, indicating that two distinct processes are operating, "mass-quenching" and "environment-quenching". Environment-quenching, at fixed over-density, evidently does not change with epoch to z ~ 1, suggesting that it occurs as large-scale structure develops in the Universe. The observed constancy of the mass-function shape for star-forming galaxies, demands that the mass-quenching of galaxies around and above M*, must be proportional to their star-formation rates at all z < 2. We postulate that this simple mass-quenching law also holds over a much broader range of stellar mass and epoch. These two simple quenching processes, plus some additional quenching due to merging, then naturally produce (a) a quasi-static Schechter mass function for star-forming galaxies with a value of M* that is set by the proportionality between the star-formation and mass-quenching rates, (b) a double Schechter function for passive galaxies with two components: the dominant one is produced by mass-quenching and has exactly the same M* as the star-forming galaxies but an alpha shallower by +1, while the other is produced by environment effects and has the same M* and alpha as the star-forming galaxies, and is larger in high density environments. Subsequent merging of quenched galaxies modifies these predictions somewhat in the denser environments, slightly increasing M* and making alpha more negative. All of these detailed quantitative relationships between the Schechter parameters are indeed seen in the SDSS, lending strong support to our simple empirically-based model. The model naturally produces for passive galaxies the "anti-hierarchical" run of mean ages and alpha-element abundances with mass.Comment: 66 pages, 19 figures, 1 movie, accepted for publication in ApJ. The movie is also available at http://www.exp-astro.phys.ethz.ch/zCOSMOS/MF_simulation_d1_d4.mo

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
    corecore