38 research outputs found

    Can on-site management mitigate nitrogen deposition impacts in non-wooded habitats?

    Get PDF
    Nitrogen (N) deposition is a major cause of plant biodiversity loss, with serious implications for appropriate management of protected sites. Reducing N emissions is the only long-term solution. However, on-site management has the potential to mitigate some of the adverse effects of N deposition. In this paper we review how management activities such as grazing, cutting, burning, hydrological management and soil disturbance measures can mitigate the negative impacts of N across a range of temperate habitats (acid, calcareous and neutral grasslands, sand dunes and other coastal habitats, heathlands, bogs and fens). The review focuses mainly on European habitats, which have a long history of N deposition, and it excludes forested systems. For each management type we distinguish between actions that improve habitat suitability for plant species of conservation importance, and actions that immobilize N or remove it from the system. For grasslands and heathlands we collate data on the quantity of N removal by each management type. Our findings show that while most activities improve habitat suitability, the majority do little to slow or to reduce the amount of N accumulating in soil pools at current deposition rates. Only heavy cutting/mowing with removal in grasslands, high intensity burns in heathlands and sod cutting remove more N than comes in from deposition under typical management cycles. We conclude by discussing some of the unintended consequences of managing specifically for N impacts, which can include damage to non-target species, alteration of soil processes, loss of the seedbank and loss of soil carbon

    Impact of simulated nitrogen pollution on heathland microfauna, mesofauna and plants

    Get PDF
    Deposition of reactive nitrogen derived from intensive agriculture and industrial processes is a major threat to biodiversity and ecosystem services around the world; however our knowledge of the impacts of nitrogen is restricted to a very limited range of organisms. Here we examine the response of groups of microfauna (testate amoebae), mesofauna (enchytraeid worms) and plants to ammonium nitrate application in the Ruabon heathland long-term experiment. Plant data showed significant differences between treatments, particularly characterised by a loss of bryophytes in nitrogen-treated plots, by contrast enchytraeids showed a non-significant increase in abundance in response to treatment. Testate amoebae showed no significant changes in abundance or inferred biomass but significant changes in community structure with a reduced abundance of Corythion dubium, interpreted as a response to the loss of bryophytes. Our results suggest that simple indices of plant community may have value for bioindication while the bioindication value of testate amoebae and enchytraeids is not clearly demonstrated

    Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation

    Get PDF
    The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration

    Nitrogen Deposition Reduces Plant Diversity and Alters Ecosystem Functioning: Field-Scale Evidence from a Nationwide Survey of UK Heathlands

    Get PDF
    Findings from nitrogen (N) manipulation studies have provided strong evidence of the detrimental impacts of elevated N deposition on the structure and functioning of heathland ecosystems. Few studies, however, have sought to establish whether experimentally observed responses are also apparent under natural, field conditions. This paper presents the findings of a nationwide field-scale evaluation of British heathlands, across broad geographical, climatic and pollution gradients. Fifty two heathlands were selected across an N deposition gradient of 5.9 to 32.4 kg ha−1 yr−1. The diversity and abundance of higher and lower plants and a suite of biogeochemical measures were evaluated in relation to climate and N deposition indices. Plant species richness declined with increasing temperature and N deposition, and the abundance of nitrophilous species increased with increasing N. Relationships were broadly similar between upland and lowland sites, with the biggest reductions in species number associated with increasing N inputs at the low end of the deposition range. Both oxidised and reduced forms of N were associated with species declines, although reduced N appears to be a stronger driver of species loss at the functional group level. Plant and soil biochemical indices were related to temperature, rainfall and N deposition. Litter C:N ratios and enzyme (phenol-oxidase and phosphomonoesterase) activities had the strongest relationships with site N inputs and appear to represent reliable field indicators of N deposition. This study provides strong, field-scale evidence of links between N deposition - in both oxidised and reduced forms - and widespread changes in the composition, diversity and functioning of British heathlands. The similarity of relationships between upland and lowland environments, across broad spatial and climatic gradients, highlights the ubiquity of relationships with N, and suggests that N deposition is contributing to biodiversity loss and changes in ecosystem functioning across European heathlands

    Inferring nitrogen deposition from plant community composition

    Get PDF
    Chronically elevated reactive nitrogen deposition has a severe impact on many ecosystems, and there is widespread interest in the possibility of using plant community composition to estimate the level of nitrogen deposition and consequent impacts. Existing approaches use a variety of simple measures including functional type ratios, Ellenberg numbers, and diversity indices. We propose an alternative approach in which species-environment models are constructed using national datasets designed to capture broad-scale deposition patterns. We construct models using partial least squares, weighted average, and maximum likelihood Gaussian logit regression for two British semi-natural habitats, and test how well they predict N deposition by cross-validation. We find that performance is good with R2 values up to 0.7, and suggest that such models could be a useful addition to the bioindication toolbox

    Heather moorland vegetation and air pollution: A comparison and synthesis of three national gradient studies

    No full text
    Large-scale spatial gradient studies are increasingly used to understand the impacts of air pollution and devise appropriate conservation and policy responses, but how consistent are the conclusions we draw from these surveys? Here, we address this question by comparing three independent gradient studies from the same habitat, UK heather moorlands. We harmonise and re-analyse vegetation data from these surveys in relation to cumulative nitrogen deposition, sulphur deposition and other potential drivers and use these results to assess the possible impacts of air pollution in this habitat. Air pollution variables explain more variance in species richness and composition than other variables in the vast majority of analyses. Untangling the relative contribution of nitrogen and (legacy) sulphur deposition is difficult due to strong correlation, but it is likely that nitrogen deposition is currently the dominant driver of change. There is consistency in the negative correlation between species richness and nitrogen deposition, but some variability in the form of this relationship due to small sample sizes. Across surveys there is a high degree of consistency in species identified as either positively or negatively correlated to nitrogen deposition, and no evidence for systematic differences. We conclude that relatively small surveys across wide gradients can provide useful information on potential drivers of diversity, as well as identify sensitive and tolerant species. Our results strongly suggest that nitrogen deposition has a severe and widespread impact on the biodiversity of British heather moorlands and is causing changes in plant communities, including promoting the spread of at least one invasive species

    Summary of optimal models for plant and soil biogeochemical responses in relation to N deposition and climatic variables<b>.</b>

    No full text
    <p>(+/−)  =  direction of response; x  =  interaction; P values  =  * <0.05, **<0.001, ***<0.001; gdd  =  growing degree days; moist  =  soil moisture; PME  =  phosphomonoesterase.</p
    corecore