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 14 

ABSTRACT 15 

Chronically elevated reactive nitrogen deposition has a severe impact on many ecosystems, and there is 16 

widespread interest in the possibility of using plant community composition to estimate the level of 17 

nitrogen deposition and consequent impacts. Existing approaches use a variety of simple measures 18 

including functional type ratios, Ellenberg numbers, and diversity indices. We propose an alternative 19 

approach in which species-environment models are constructed using national datasets designed to 20 

capture broad-scale deposition patterns. We construct models using partial least squares, weighted 21 

average, and maximum likelihood Gaussian logit regression for two British semi-natural habitats, and 22 

test how well they predict N deposition by cross-validation. We find that performance is good with R2 23 

values up to 0.7, and suggest that such models may be a useful addition to the bioindication toolbox.  24 
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1. Introduction 27 

Deposition of reactive nitrogen (N) largely derived from intensive agricultural and industrial 28 

activity is an increasingly urgent conservation concern. A wealth of evidence links N deposition to loss of 29 

biodiversity, plant community change and degradation of ecosystem services (Bobbink et al. 1998; 30 

2010). In developing countries N deposition is increasing rapidly and constitutes a clear threat to 31 

biodiversity hot-spots and protected areas (Bleeker et al. 2011; Phoenix et al. 2006). While N deposition 32 

is stabilising, or even falling in much of the industrialised world, ecosystems carry a legacy of past 33 

deposition which will not be quickly reversed. National- and international-scale models of N deposition 34 

(Jonson et al. 1998; Smith et al. 2000; Fagerli & Aas 2008) represent the large-scale distribution of 35 

pollution reasonably accurately, but cannot show the local-scale impacts of point sources such as 36 

individual industrial or agricultural units. It is these local-scale impacts which are usually the concern of 37 

practical conservation management, where the interest is often in the impacts of a specific polluter on 38 

an individual designated site. Protected areas are preferentially located in topographically complex 39 

regions (Joppa & Pfaff 2009) where large-scale deposition models perform less effectively (Sutton et al. 40 

2004). Considerable research attention has therefore focussed on the identification of bioindicator 41 

approaches. Bioindicators can be used to identify both the level of pollution and the impacts of pollution 42 

exposure, although this distinction is rarely made explicit.  Among the many approaches to bioindication 43 

of nitrogen pollution (Sutton et al. 2004), studies have investigated the potential of plant community-44 

based bioindicators using the occurrence or abundance of indicator species, or derived indices such as 45 

Ellenberg values, plant functional type ratios and diversity measures (Pitcairn et al. 2002, 2003; Stevens 46 

et al. 2009). Although results have often shown significant relationships with N deposition, the strength 47 

of this relationship is variable.  48 
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 We propose an alternative concept in which relationships between plant species composition 49 

and N deposition are modelled using national vegetation datasets and N deposition models. These 50 

species-environment models can be calibrated using sites better suited to national-scale models (away 51 

from point sources and complex topography), and then applied to predict deposition in situations where 52 

national-scale deposition models are less appropriate. The approach essentially uses vegetation-N 53 

relationships to down-scale national deposition models.   In this paper we test the concept that the 54 

vegetation composition of a set of plant communities that fulfil certain criteria can be used to develop 55 

models to predict the cumulative N deposition at other sites comprising a similar vegetation type.   56 

2. Material and Methods 57 

We model the relationship between species abundance and N deposition for two semi-natural 58 

UK vegetation types using three alternative regression approaches.  We use UK vegetation datasets of 59 

average species cover for acid grasslands (%), and frequency (occurrence per quadrat) for heather 60 

moorlands. The acid grassland dataset encompasses 64 sites of UK National Vegetation Classification 61 

(NVC: Rodwell 1992) type U4, (Festuca ovina-Agrostis capillaris-Galium saxatile grassland) sampled in 62 

2002-3 (Stevens et al. 2004, 2006). The heathlands dataset (NVC type H12, Calluna vulgaris-Vaccinium 63 

myrtillus heath) combines the data of Edmondson et al. (2010) and Caporn et al. (2009) giving 36 sites 64 

sampled in 2005 and 2006. While the grasslands data includes all plant species the heathlands data 65 

includes bryophytes alone. All studies used five quadrats per site.    66 

In both datasets, N deposition is the strongest environmental correlate with community 67 

composition, and appears to be a key agent of vegetation change (Payne et al. 2011; unpublished). We 68 

use modelled cumulative N deposition between 1900 and the year of sampling rather than modelled 69 

current N deposition, reflecting an increasing weight of opinion that cumulative deposition better 70 

represents how ecosystems respond to N pollution (Duprè et al. 2010, De Schrijver et al. 2011). We 71 
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apply the scaling factors of Fowler et al. (2004) to output from the Centre for Ecology and Hydrology 72 

CBED model (Smith et al. 2000) to calculate cumulative nitrogen deposition since 1900 on a 5x5 km grid 73 

basis. The cumulative N deposition range was 430-2856 kg N ha-1 (mean: 1742, sd: 720) for the grassland 74 

sites and 459-3067 kg N ha-1 (mean: 1886, sd: 671) for the heathlands.  75 

We test three regression techniques based on two contrasting concepts of how species 76 

abundance may respond to N deposition. The simplest concept assumes that species respond linearly to 77 

N deposition: an increase in N deposition produces an increase or decline in each species.  Multiple 78 

linear regression performs poorly for ecological data with large number of species whose abundances 79 

are strongly correlated (e.g. ter Braak & van Dam 1989). We test an alternative approach: partial least 80 

squares (PLS) regression. PLS attempts to extract a minimal number of latent factors or components 81 

from a training set which explain the variability in the environmental data (Geladi & Kowalski 1986). PLS 82 

has been applied in several previous ecological studies (e.g. Charman 1997) and has been used for the 83 

bioindication of nitrogen deposition with metabolic finger-print data (Gidman et al. 2006).  84 

The assumption of a linear relationship between species abundance and cumulative N 85 

deposition may be valid if impacts are due to direct toxicity, species are at the edge of their 86 

environmental tolerances or where there is a limited range of deposition values. However, N is an 87 

essential nutrient for plants so an alternative hypothesis is that, for many species, small inputs may be 88 

beneficial but larger additions deleterious, producing a unimodal response. We therefore also test two 89 

regression techniques which assume a unimodal response of species abundance to N deposition.  90 

In maximum likelihood (ML) Gaussian logit regression, the relationship between an 91 

environmental variable and abundance of each species is modelled as a Gaussian curve. Maximum 92 

likelihood estimation is used to determine the value of the environmental variable with the highest 93 

probability of being associated with a particular community composition; this estimate is the model 94 
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prediction (for details of computation see Birks 1995). The method has been shown to perform well with 95 

simulated data and real ecological datasets (ter Braak & Looman 1986), but it is relatively complex and 96 

computationally intensive.    97 

An alternative unimodal technique is weighted average (WA) regression, in which it is assumed 98 

that a species will be most abundant in a site with environmental conditions close to the species 99 

optimum; a reasonable approximation of the species optimum is therefore made by calculating the 100 

average environmental values of all the sites in which the species  occurs, weighted by the abundance of 101 

the species in those sites. An estimate of the environmental variable for an unknown site is provided by 102 

a weighted average of the optima of all species present. As this procedure serves to compress the 103 

environmental gradient a de-shrinking regression is applied to remove this compression. WA is less 104 

statistically rigorous than ML but is computationally simpler and often has superior performance in 105 

practise (Birks et al. 1990; ter Braak & van Dam 1989).  106 

Assumptions of all these models include the independence of samples, lack of confounding 107 

secondary gradients and the presence of a direct (or indirect but linear) relationship between the 108 

species and the environmental variable of interest. These assumptions, and the consequences of their 109 

violation, are discussed in greater depth by Birks (1990, 1995, 1998), Belyea (2007) and ter Braak & 110 

Prentice (1988).  111 

 We applied all three techniques (PLS, ML & WA) to both of the vegetation datasets. We assessed 112 

model performance statistically by applying the model to the same dataset used to construct the model. 113 

To avoid overly optimistic estimates of performance if the same data are used to both build and test 114 

models we used jack-knife (‘leave-one-out’) cross-validation in which models are successively 115 

constructed using n-1 samples with the remaining sample serving as a test. Performance statistics used 116 

are the R2 between observed and predicted values, the root mean squared error of prediction (RMSEP) 117 
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and the Maximum Bias (cross-validated values are denoted R2
jack, RMSEPjack and Max Biasjack). These 118 

three measures provide distinct but complementary information about the performance of models: R2 119 

gives a measure of the overall strength of relationship between observed and predicted values, RMSEP 120 

gives a measure of average errors along the gradient and Maximum Bias gives a measure of maximum 121 

mean error for any one tenth of the gradient. Models were developed using C2 (Juggins 2003). 122 

3. Results 123 

All models produced RMSEP values below the standard deviation of the nitrogen deposition 124 

data, so all can be considered to have predictive power despite the limited size of the training sets. 125 

RMSEP values suggest that these models may be able to predict cumulative N deposition with a mean 126 

error as low as 367 kg N ha-1, 15% of the range captured by the vegetation dataset.  127 

For the acid grasslands data the best-performing model in terms of R2 and RMSEP is ML and in 128 

terms of maximum bias is a 3-component PLS model. For the heathlands data the best-performing 129 

model is a single-component PLS model for R2 and RMSEP and ML for maximum bias. Model 130 

performance with the heathland data is superior to that of the grasslands, despite the smaller dataset 131 

size and use of frequency rather than cover data.  This may represent greater importance of other 132 

environmental variables in the grasslands or greater sensitivity of bryophytes in comparison to vascular 133 

plants. The strength of the relationships between observed data (i.e. the output of deposition models) 134 

and predicted values, using the ML model for acid grasslands and the PLS model for heathlands, is 135 

shown in Fig. 1. Regression lines are close to the 1:1 line, and scatter is relatively limited.  Both models 136 

tend to over-predict N deposition at the low end of the gradient and under-predict N deposition at the 137 

high end of the gradient.  138 

4. Discussion 139 
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Our study shows that species-environment models may be effective at predicting cumulative 140 

nitrogen deposition from vegetation composition.  Plant community-based bioindication has several 141 

appealing features. In contrast to other techniques, vegetation surveys require no more equipment than 142 

a quadrat and no more expense than the time of an experienced observer. The skills for plant 143 

identification are fairly widespread and much vegetation data is collected routinely. We show that 144 

relatively simple statistical models perform well, and appear to have potential for bioindication. By 145 

making better use of community data, such models may allow more accurate estimates of deposition. 146 

For instance in the acid grasslands data, the R2  between N deposition and Ellenberg R was only 0.06 147 

(there was no significant relationship with Ellenberg N: Stevens et al. 2010), compared to an R2
jack of 0.64 148 

here. Once such models are developed, the application of the model to new data is straightforward and 149 

software is freely available.   150 

A strength of our approach is that the relative performance of models imparts some information 151 

about the underlying relationship between N deposition and community composition.  Consequently, it 152 

is best to consider several different approaches in evaluating data from such studies.   For instance, if a 153 

maximum likelihood regression fits the data better than a partial least squares regression, it follows that 154 

the relationship is better modelled as a unimodal curve than a straight line.   For species abundance 155 

along an environmental gradient this in turn suggests that the full range of the gradient has been 156 

sampled, since species respond by increasing, and then decreasing, in abundance along the gradient.    157 

Our models are developed on the basis of national-scale models rather than local deposition 158 

monitoring data for the individual sites. This is partly for pragmatic reasons, as it is clearly impractical to 159 

monitor deposition at a hundred, widely dispersed and often remote sites for a period of many years.  160 

The use of modelled data is justified as the deposition model performs well at capturing the broad-scale 161 

patterns of deposition and the sampling sites have been carefully selected to capture this broad-scale 162 
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pattern, avoiding local factors which may modify deposition. The regression models developed using 163 

these data-sets should therefore be able to predict N deposition in situations where the national models 164 

cannot (e.g. in the rain shadow of a woodland, an exposed slope, or downwind of a long-term point 165 

source). The scatter in our results probably partly relates to the limitations of the deposition models. 166 

Indeed, the comparison of values predicted by our regression models and the national deposition model 167 

could potentially indicate the contribution of local factors.  168 

Our study is a proof-of-concept but further validation and testing of these models is necessary. 169 

It is possible that model performance in practice may be poorer than the cross-validated results we 170 

present here due to the influence of other environmental factors, taxonomic biases, spatial 171 

autocorrelation (Telford & Birks 2005) and surveyor variability. However there are also alternative 172 

modelling  approaches which might offer superior performance (including neural nets: Malmgren & 173 

Nordlund 1997, analogue techniques: Simpson 2007, and Bayesian approaches: Toivonen et al. 2001). 174 

Further studies including a greater variety of techniques and testing with independently collected field 175 

data will be required to reveal the full potential of this approach. Studies of local-scale gradients near to 176 

point-sources would be a particularly interesting test of model performance. Although we use 177 

cumulative deposition data, models could equally be constructed using current deposition values for 178 

easier comparison with measured data: correlations between cumulative and modern deposition are 179 

strong so we believe such models will have broadly similar efficacy. Our results indicate that models 180 

relating nitrogen deposition to vegetation in large-scale gradient studies could be a useful addition to 181 

the suite of techniques used for the bioindication of pollution, and deserve further study.  182 

  183 
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Figure and Table 291 

 292 

Table 1. Model performance for grassland and heathland data showing model structure and R2, root 293 

mean squared error of prediction (RMSEP) and maximum bias (Max Bias) determined by jack-knife 294 

cross-validation. Model results illustrated in Fig. 1 marked ‘*’.  295 

 R2
jack RMSEPjack MaxBiasjack 

Grasslands 

PLS (3 component) 0.43 548 623 

ML* 0.64 464 1440 

WA (inverse 

deshrinking) 

0.46 526 677 

Heathlands 

PLS (1 component)* 0.70 367 695 

ML 0.62 456 586 

WA (inverse 

deshrinking) 

0.61 421 759 

 296 

 297 

 298 

 299 
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Figure 1. Cumulative N deposition (the output of a national deposition model with historical scaling 300 

factors) against vegetation-predicted cumulative N deposition for heathland and grassland data-sets 301 

under jack-knife cross validation.  302 
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