18 research outputs found

    The Effect of Representing Bromine from VSLS on the Simulation and Evolution of Antarctic Ozone

    Get PDF
    We use the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine(Br(sub y)) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Br(sub y) are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASAs Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Br(sub y) source from VSLS

    Validation of Aura Microwave Limb Sounder OH measurements with Fourier Transform Ultra-Violet Spectrometer total OH column measurements at Table Mountain, California

    Get PDF
    The first seasonal and interannual validation of OH measurements from the Aura Microwave Limb Sounder (MLS) has been conducted using ground-based OH column measurements from the Fourier Transform Ultra-Violet Spectrometer (FTUVS) over the Jet Propulsion Laboratory's Table Mountain Facility (TMF) during 2004–2007. To compare with FTUVS total column measurements, MLS OH vertical profiles over TMF are integrated to obtain partial OH columns above 21.5 hPa, which covers nearly 90% of the total column. The tropospheric OH and the lower stratopheric OH not measured by MLS are estimated using GEOS (Goddard Earth Observing System)-Chem and a Harvard 2-D model implemented within GEOS-Chem, respectively. A number of field observations and calculations from a photochemical box model are compared to OH profiles from these models to estimate the variability in the lower atmospheric OH and thus the uncertainty in the combined total OH columns from MLS and models. In general, the combined total OH columns agree extremely well with TMF total OH columns, especially during seasons with high OH. In winter with low OH, the combined columns are often higher than TMF measurements. A slightly weaker seasonal variation is observed by MLS relative to TMF. OH columns from TMF and the combined total columns from MLS and models are highly correlated, resulting in a mean slope of 0.969 with a statistically insignificant intercept. This study therefore suggests that column abundances derived from MLS vertical profiles have been validated to within the mutual systematic uncertainties of the MLS and FTUVS measurements

    An Observationally Constrained Evaluation of the Oxidative Capacity in the Tropical Western Pacific Troposphere

    Get PDF
    Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January–February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of two, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January–February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP

    A pervasive role for biomass burning in tropical high ozone/low water structures.

    Get PDF
    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.We thank L. Pan for coordinating the CONTRAST flights and her constructive criticism of an early version of the manuscript; S. Schauffler, V. Donets and R. Lueb for collecting and analysing AWAS samples; T. Robinson and O. Shieh for providing meteorology forecasts in the field; and the pilots and crews of the CAST BAe-146 and CONTRAST Gulfstream V aircrafts for their dedication and professionalism. CAST was funded by the Natural Environment Research Council; CONTRAST was funded by the National Science Foundation. Research at the Jet Propulsion Laboratory, California Institute of Technology, is performed under contract with the National Aeronautics and Space Administration (NASA). A number of the US-based investigators also benefitted from the support of NASA as well as the National Oceanic and Atmospheric Administration. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or US Government position, policy or decision. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory. NCAR is sponsored by the National Science Foundation.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1026

    Stratospheric Injection of Brominated Very Short‐Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models

    Get PDF
    We quantify the stratospheric injection of brominated very short‐lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC‐11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry‐Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer‐lived chemicals as a surrogate for VSLS

    Paris Climate Agreement: Beacon of Hope

    Get PDF
    Climate Change; Climate Change Management and Policy; Energy Economic

    Paris Climate Agreement: Beacon of Hope

    Get PDF
    Climate Change; Climate Change Management and Policy; Energy Economic

    Quantifying the Causes of Differences in Tropospheric OH Within Global Models

    No full text
    The hydroxyl radical (OH) is the primary daytime oxidant in the troposphere and provides the main loss mechanism for many pollutants and greenhouse gases, including methane (CH4). Global mean tropospheric OH differs by as much as 80% among various global models, for reasons that are not well understood. We use neural networks (NNs), trained using archived output from eight chemical transport models (CTMs) that participated in the Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols and Transport Model Intercomparison Project (POLMIP), to quantify the factors responsible for differences in tropospheric OH and resulting CH4 lifetime (Tau CH4) between these models. Annual average Tau CH4, for loss by OH only, ranges from 8.0 to 11.6 years for the eight POLMIP CTMs. The factors driving these differences were quantified by inputting 3-D chemical fields from one CTM into the trained NN of another CTM. Across all CTMs, the largest mean differences in Tau CH4 (Delta Tau CH4) result from variations in chemical mechanisms (Delta Tau CH4 = 0.46 years), the photolysis frequency (J) of O3 yields O(D-1) (0.31 years), local O3 (0.30 years), and CO (0.23 years). The Delta Tau CH4 due to CTM differences in NO(x) (NO + NO2) is relatively low (0.17 years), although large regional variation in OH between the CTMs is attributed to NO(x). Differences in isoprene and J(NO2) have negligible overall effect on globally averaged tropospheric OH, although the extent of OH variations due to each factor depends on the model being examined. This study demonstrates that NNs can serve as a useful tool for quantifying why tropospheric OH varies between global models, provided that essential chemical fields are archived
    corecore