272 research outputs found
Modules for Experiments in Stellar Astrophysics (MESA): Giant Planets, Oscillations, Rotation, and Massive Stars
We substantially update the capabilities of the open source software package
Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional
stellar evolution module, MESA Star. Improvements in MESA Star's ability to
model the evolution of giant planets now extends its applicability down to
masses as low as one-tenth that of Jupiter. The dramatic improvement in
asteroseismology enabled by the space-based Kepler and CoRoT missions motivates
our full coupling of the ADIPLS adiabatic pulsation code with MESA Star. This
also motivates a numerical recasting of the Ledoux criterion that is more
easily implemented when many nuclei are present at non-negligible abundances.
This impacts the way in which MESA Star calculates semi-convective and
thermohaline mixing. We exhibit the evolution of 3-8 Msun stars through the end
of core He burning, the onset of He thermal pulses, and arrival on the white
dwarf cooling sequence. We implement diffusion of angular momentum and chemical
abundances that enable calculations of rotating-star models, which we compare
thoroughly with earlier work. We introduce a new treatment of
radiation-dominated envelopes that allows the uninterrupted evolution of
massive stars to core collapse. This enables the generation of new sets of
supernovae, long gamma-ray burst, and pair-instability progenitor models. We
substantially modify the way in which MESA Star solves the fully coupled
stellar structure and composition equations, and we show how this has improved
MESA's performance scaling on multi-core processors. Updates to the modules for
equation of state, opacity, nuclear reaction rates, and atmospheric boundary
conditions are also provided. We describe the MESA Software Development Kit
(SDK) that packages all the required components needed to form a unified and
maintained build environment for MESA. [Abridged]Comment: Accepted for publication in The ApJ Supplement Series. Extra
informations required to reproduce the calculations in this paper are
available at http://mesastar.org/results/mesa
New optical and near-infrared Surface Brightness Fluctuations models. A primary distance indicator ranging from Globular Clusters to distant galaxies?
We present new theoretical models for Surface Brightness Fluctuations (SBF)
both for optical and near-infrared bands in standard ground-based and Hubble
Space Telescope filter systems. Simple Stellar Population simulations are
adopted. Models cover the age and metallicity ranges from to and
from to 0.04 respectively. Effects due to the variation of the
Initial Mass Function and the stellar color-temperature relations are explored.
Particular attention is devoted to very bright stars in the color-magnitude
diagram and to investigate the effects of mass loss along the Red Giant Branch
(RGB) and the Asymptotic Giant Branch (AGB). It is found that and bands
SBF amplitudes are powerful diagnostics for the morphology of the Horizontal
Branch and the Post-AGB stars population. We point out that a careful treatment
of mass loss process along the RGB and AGB is fundamental in determining
reliable SBF evaluations. The SBF measurements are used to give robust
constraints on the evolution of AGB stars, suggesting that mass loss activity
on AGB stars should be twice more efficient than on the RGB stars. Our models
are able to reproduce the absolute SBF magnitudes of the Galactic Globular
Clusters and of galaxies, and their integrated colors. New calibrations of
absolute SBF magnitude in , , , and photometric filters are
provided, which appear reliable enough to directly gauge distances bypassing
other distance indicators. The SBF technique is also used as stellar population
tracer to derive age and metallicity of a selected sample of galaxies of known
distances. Finally, {\it SBF color} versus {\it integrated color} diagrams are
proposed as particularly useful in removing the well known {\it age-metallicity
degeneracy} affecting our knowledge of remote stellar systems.Comment: AJ accepted, 46 pages, 21 figures, 10 tables, uses aastex.cl
Structure and evolution of rotationally and tidally distorted stars
This paper aims to study the configuration of two components caused by
rotational and tidal distortions in the model of a binary system. The
potentials of the two distorted components can be approximated to 2nd-degree
harmonics. Furthermore, both the accretion luminosity () and the
irradiative luminosity are included in stellar structure equations. The
equilibrium structure of rotationally and tidally distorted star is exactly a
triaxial ellipsoids. A formula describing the isobars is presented, and the
rotational velocity and the gravitational acceleration at the primary surface
simulated. The results show the distortion at the outer layers of the primary
increases with temporal variation and system evolution. Besides, it was
observed that the luminosity accretion is unstable, and the curve of the
energy-generation rate fluctuates after the main sequence in rotation
sequences. The luminosity in rotation sequences is slightly weaker than that in
non-rotation sequences. As a result, the volume expands slowly. Polar ejection
is intensified by the tidal effect. The ejection of an equatorial ring may be
favoured by both the opacity effect and the -effect in
the binary system.Comment: 10 pages, 17 figures,Accepted by Astronomy and Astrophysic
Changes in the expression of the Alzheimer's disease-associated presenilin gene in drosophila heart leads to cardiac dysfunction
Mutations in the presenilin genes cause the majority of early-onset familial Alzheimer’s disease.
Recently, presenilin mutations have been identified in patients with dilated cardiomyopathy
(DCM), a common cause of heart failure and the most prevalent diagnosis in cardiac
transplantation patients. However, the molecular mechanisms, by which presenilin mutations lead
to either AD or DCM, are not yet understood. We have employed transgenic Drosophila models
and optical coherence tomography imaging technology to analyze cardiac function in live adult
Drosophila. Silencing of Drosophila ortholog of presenilins (dPsn) led to significantly reduced
heart rate and remarkably age-dependent increase in end-diastolic vertical dimensions. In contrast,
overexpression of dPsn increased heart rate. Either overexpression or silencing of dPsn resulted in
irregular heartbeat rhythms accompanied by cardiomyofibril defects and mitochondrial
impairment. The calcium channel receptor activities in cardiac cells were quantitatively
determined via real-time RT-PCR. Silencing of dPsn elevated dIP[subscript 3]R expression, and reduced dSERCA expression; overexprerssion of dPsn led to reduced dRyR expression. Moreover,
overexpression of dPsn in wing disc resulted in loss of wing phenotype and reduced expression of
wingless. Our data provide novel evidence that changes in presenilin level leads to cardiac
dysfunction, owing to aberrant calcium channel receptor activities and disrupted Wnt signaling
transduction, indicating a pathogenic role for presenilin mutations in DCM pathogenesis.Cure Alzheimer’s FundNational Institutes of Health (U.S.) (Grant R01AG014713)National Institutes of Health (U.S.) (Grant R01MH60009)National Institutes of Health (U.S.) (Grant R01CA75289)National Institutes of Health (U.S.) (Grant R01HL095717)National Institutes of Health (U.S.) (Grant FA9550-07-1-0014
The Fornax Deep Survey (FDS) with the VST. XI. The search for signs of preprocessing between the Fornax main cluster and Fornax A group
Context. Galaxies either live in a cluster, a group, or in a field environment. In the hierarchical framework, the group environment bridges the field to the cluster environment, as field galaxies form groups before aggregating into clusters. In principle, environmental mechanisms, such as galaxy-galaxy interactions, can be more efficient in groups than in clusters due to lower velocity dispersion, which lead to changes in the properties of galaxies. This change in properties for group galaxies before entering the cluster environment is known as preprocessing. Whilst cluster and field galaxies are well studied, the extent to which galaxies become preprocessed in the group environment is unclear. Aims: We investigate the structural properties of cluster and group galaxies by studying the Fornax main cluster and the infalling Fornax A group, exploring the effects of galaxy preprocessing in this showcase example. Additionally, we compare the structural complexity of Fornax galaxies to those in the Virgo cluster and in the field. Methods: Our sample consists of 582 galaxies from the Fornax main cluster and Fornax A group. We quantified the light distributions of each galaxy based on a combination of aperture photometry, Sérsic+PSF (point spread function) and multi-component decompositions, and non-parametric measures of morphology. From these analyses, we derived the galaxy colours, structural parameters, non-parametric morphological indices (Concentration C; Asymmetry A, Clumpiness S; Gini G; second order moment of light M20), and structural complexity based on multi-component decompositions. These quantities were then compared between the Fornax main cluster and Fornax A group. The structural complexity of Fornax galaxies were also compared to those in Virgo and in the field. Results: We find significant (Kolmogorov-Smirnov test p-value < α = 0.05) differences in the distributions of quantities derived from Sérsic profiles (g′‒r′, r′‒i′, Re, and μ̄e,r′), and non-parametric indices (A and S) between the Fornax main cluster and Fornax A group. Fornax A group galaxies are typically bluer, smaller, brighter, and more asymmetric and clumpy. Moreover, we find significant cluster-centric trends with r′‒i′, Re, and μ̄e,r′, as well as A, S, G, and M20 for galaxies in the Fornax main cluster. This implies that galaxies falling towards the centre of the Fornax main cluster become fainter, more extended, and generally smoother in their light distribution. Conversely, we do not find significant group-centric trends for Fornax A group galaxies. We find the structural complexity of galaxies (in terms of the number of components required to fit a galaxy) to increase as a function of the absolute r′-band magnitude (and stellar mass), with the largest change occurring between ‒14 mag ≲Mr′ ≲ ‒19 mag (7.5 ≲ log10(M*/M⊙) ≲ 9.7). This same trend was found in galaxy samples from the Virgo cluster and in the field, which suggests that the formation or maintenance of morphological structures (e.g., bulges, bar) are largely due to the stellar mass of the galaxies, rather than the environment they reside in. Full Tables 2, 3, and I.1 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/647/A10
Kepler observations of variability in B-type stars
The analysis of the light curves of 48 B-type stars observed by Kepler is
presented. Among these are 15 pulsating stars, all of which show low
frequencies characteristic of SPB stars. Seven of these stars also show a few
weak, isolated high frequencies and they could be considered as SPB/beta Cep
hybrids. In all cases the frequency spectra are quite different from what is
seen from ground-based observations. We suggest that this is because most of
the low frequencies are modes of high degree which are predicted to be unstable
in models of mid-B stars. We find that there are non-pulsating stars within the
beta Cep and SPB instability strips. Apart from the pulsating stars, we can
identify stars with frequency groupings similar to what is seen in Be stars but
which are not Be stars. The origin of the groupings is not clear, but may be
related to rotation. We find periodic variations in other stars which we
attribute to proximity effects in binary systems or possibly rotational
modulation. We find no evidence for pulsating stars between the cool edge of
the SPB and the hot edge of the delta Sct instability strips. None of the stars
show the broad features which can be attributed to stochastically-excited modes
as recently proposed. Among our sample of B stars are two chemically peculiar
stars, one of which is a HgMn star showing rotational modulation in the light
curve.Comment: 19 pages, 11 figures, 4 table
Mass-loss rates of Very Massive Stars
We discuss the basic physics of hot-star winds and we provide mass-loss rates
for (very) massive stars. Whilst the emphasis is on theoretical concepts and
line-force modelling, we also discuss the current state of observations and
empirical modelling, and address the issue of wind clumping.Comment: 36 pages, 15 figures, Book Chapter in "Very Massive Stars in the
Local Universe", Springer, Ed. Jorick S. Vin
The VLT-FLAMES Tarantula survey XX. The nature of the X-ray bright emission-line star VFTS 399
Context. The stellar population of the 30 Doradus star-forming region in the Large Magellanic Cloud contains a subset of apparently single, rapidly rotating O-type stars. The physical processes leading to the formation of this cohort are currently uncertain.
Aims. One member of this group, the late O-type star VFTS 399, is found to be unexpectedly X-ray bright for its bolometric luminosity − in this study we aim to determine its physical nature and the cause of this behaviour.
Methods. To accomplish this we performed a time-resolved analysis of optical, infrared and X-ray observations.
Results. We found VFTS 399 to be an aperiodic photometric variable with an apparent near-IR excess. Its optical spectrum demonstrates complex emission profiles in the lower Balmer series and select He i lines − taken together these suggest an OeBe classification. The highly variable X-ray luminosity is too great to be produced by a single star, while the hard, non-thermal nature suggests the presence of an accreting relativistic companion. Finally, the detection of periodic modulation of the X-ray lightcurve is most naturally explained under the assumption that the accretor is a neutron star.
Conclusions. VFTS 399 appears to be the first high-mass X-ray binary identified within 30 Dor, sharing many observational characteristics with classical Be X-ray binaries. Comparison of the current properties of VFTS 399 to binary-evolution models suggests a progenitor mass ≳25 M⊙ for the putative neutron star, which may host a magnetic field comparable in strength to those of magnetars. VFTS 399 is now the second member of the cohort of rapidly rotating “single” O-type stars in 30 Dor to show evidence of binary interaction resulting in spin-up, suggesting that this may be a viable evolutionary pathway for the formation of a subset of this stellar population
The Fornax Deep Survey with VST VII. evolution and structure of late type galaxies inside the virial radius of the fornax cluster
Context. We present the study of a magnitude limited sample (mB ≤ 16.6 mag) of 13 late type galaxies (LTGs), observed inside the virial radius, Rvir ∼ 0.7 Mpc, of the Fornax cluster within the Fornax Deep Survey (FDS).
Aims. The main objective is to use surface brightness profiles and g − i colour maps to obtain information on the internal structure of these galaxies and find signatures of the mechanisms that drive their evolution in high-density environments inside the virial radius of the cluster.
Methods. By modelling galaxy isophotes, we extract the azimuthally averaged surface brightness profiles in four optical bands. We also derive g − i colour profiles, and relevant structural parameters like total magnitude and effective radius. For ten of the galaxies in this sample, we observe a clear discontinuity in their typical exponential surface brightness profiles, derive their “break radius”, and classify their disc-breaks into Type II (down-bending) or Type III (up-bending).
Results. We find that Type II galaxies have bluer average (g − i) colour in their outer discs while Type III galaxies are redder. The break radius increases with stellar mass and molecular gas mass while it decreases with molecular gas-fractions. The inner and outer scale-lengths increase monotonically with absolute magnitude, as found in other works. For galaxies with CO(1-0) measurements, there is no detected cold gas beyond the break radius (within the uncertainties). In the context of morphological segregation of LTGs in clusters, we also find that, in Fornax, galaxies with morphological type 5 < T ≤ 9 (∼60% of the sample) are located beyond the high-density, ETG-dominated regions, however there is no correlation between T and the disc-break type. We do not find any correlation between the average (g − i) colours and cluster-centric distance, but the colour-magnitude relation holds true.
Conclusions. The main results of this work suggest that the disc-breaks of LTGs inside the virial radius of the Fornax cluster seem to have arisen through a variety of mechanisms (e.g. ram-pressure stripping, tidal disruption), which is evident in their outer-disc colours and the absence of molecular gas beyond their break radius in some cases. This can result in a variety of stellar populations inside and outside the break radii
- …