57 research outputs found

    ADMAP-2: The next-generation Antarctic magnetic anomaly map

    Get PDF
    The Antarctic Digital Magnetic Anomaly Project compiled the first international magnetic anomaly map of the Antarctic region south of 60\ubaS (ADMAP-1) some six years after its 1995 launch (Golynsky et al., 2001; Golynsky et al., 2007; von Frese et al., 2007). This magnetic anomaly compilation provided new insights into the structure and evolution of Antarctica, including its Proterozoic-Archaean cratons, Proterozoic-Palaeozoic orogens, Palaeozoic-Cenozoic magmatic arc systems, continental rift systems and rifted margins, large igneous provinces and the surrounding oceanic gateways. The international working group produced the ADMAP-1 database from more than 1.5 million line-kilometres of terrestrial, airborne, marine and satellite magnetic observations collected during the IGY 1957-58 through 1999. Since the publication of the first magnetic anomaly map, the international geomagnetic community has acquired more than 1.9 million line-km of new airborne and marine data. This implies that the amount of magnetic anomaly data over the Antarctic continent has more than doubled. These new data provide important constraints on the geology of the enigmatic Gamburtsev Subglacial Mountains and Prince Charles Mountains, Wilkes Land, Dronning Maud Land, and other largely unexplored Antarctic areas (Ferraccioli et al., 2011, Aitken et al., 2014 \u327 Mieth & Jokat, 2014, Golynsky et al., 2013). The processing of the recently acquired data involved quality assessments by careful statistical analysis of the crossover errors. All magnetic data used in the ADMAP-2 compilation were delivered as profiles, although several of them were in raw form. Some datasets were decimated or upward continued to altitudes of 4 km or higher with the higher frequency geological signals smoothed out. The line data used for the ADMAP-1 compilation were reprocessed for obvious errors and residual corrugations. The new near-surface magnetic data were corrected for the international geomagnetic reference field and diurnal effects, edited for high-frequency errors, and levelled to minimize line-correlated noise. The magnetic anomaly data collected mainly in the 21-st century clearly cannot be simply stitched together with the previous surveys. Thus, mutual levelling adjustments were required to accommodate overlaps in these surveys. The final compilation merged all the available aeromagnetic and marine grids to create the new composite grid of the Antarctic with minimal mismatch along the boundaries between the datasets. Regional coverage gaps in the composite grid will be filled with anomaly estimates constrained by both the near-surface data and satellite magnetic observations taken mainly from the CHAMP and Swarm missions. Magnetic data compilations are providing tantalizing new views into regional-scale subglacial geology and crustal architecture in interior of East and West Antarctica. The ADMAP-2 map provides a new geophysical foundation to better understand the geological structure and tectonic history of Antarctica and surrounding marine areas. In particular, it will provide improved constraints on the lithospheric transition of Antarctica to its oceanic basins, and thus enable improved interpretation of the geodynamic evolution of the Antarctic lithosphere that was a key component in the assembly and break-up of the Rodinia and Gondwana supercontinents. This work was supported by the Korea Polar Research Institute

    Advanced Virgo Plus: Future Perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF
    We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25Hz to 1600Hz, as well as ranges in orbital speed, frequency and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100Hz and 200Hz, correspond to an amplitude h0 of about 1e-25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4e-26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically-marginalized upper limits are close to the predicted amplitude from about 70Hz to 100Hz; the limits assuming the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40Hz to 200Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500Hz or more

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run

    Get PDF
    We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 M⊙–1.0 M⊙ and mass ratio q ≥ 0.1 in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2yr−1 ⁠. We estimate the sensitivity of our search over the entirety of Advanced LIGO’s and Advanced Virgo’s third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH ≳ 0.6 (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out fPBH = 1. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound fDBH < 10−5 on the fraction of atomic dark matter collapsed into black holes

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run

    Get PDF
    We describe a search for gravitational waves from compact binaries with atleast one component with mass 0.2 MM_\odot -- 1.0M1.0 M_\odot and mass ratio q0.1q\geq 0.1 in Advanced LIGO and Advanced Virgo data collected between 1 November2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. Themost significant candidate has a false alarm rate of 0.2 yr1\mathrm{yr}^{-1}. Weestimate the sensitivity of our search over the entirety of Advanced LIGO's andAdvanced Virgo's third observing run, and present the most stringent limits todate on the merger rate of binary black holes with at least one subsolar-masscomponent. We use the upper limits to constrain two fiducial scenarios thatcould produce subsolar-mass black holes: primordial black holes (PBH) and amodel of dissipative dark matter. The PBH model uses recent prescriptions forthe merger rate of PBH binaries that include a rate suppression factor toeffectively account for PBH early binary disruptions. If the PBHs aremonochromatically distributed, we can exclude a dark matter fraction in PBHsfPBH0.6f_\mathrm{PBH} \gtrsim 0.6 (at 90% confidence) in the probed subsolar-massrange. However, if we allow for broad PBH mass distributions we are unable torule out fPBH=1f_\mathrm{PBH} = 1. For the dissipative model, where the dark matterhas chemistry that allows a small fraction to cool and collapse into blackholes, we find an upper bound $f_{\mathrm{DBH}} atomic dark matter collapsed into black holes.<br

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a

    Get PDF
    We search for gravitational-wave transients associated with gamma-ray bursts detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC - 1 October 2019 15:00 UTC). 105 gamma-ray bursts were analyzed using a search for generic gravitational-wave transients; 32 gamma-ray bursts were analyzed with a search that specifically targets neutron star binary mergers as short gamma-ray burst progenitors. We describe a method to calculate the probability that triggers from the binary merger targeted search are astrophysical and apply that method to the most significant gamma-ray bursts in that search. We find no significant evidence for gravitational-wave signals associated with the gamma-ray bursts that we followed up, nor for a population of unidentified subthreshold signals. We consider several source types and signal morphologies, and report for these lower bounds on the distance to each gamma-ray burst

    Model-based cross-correlation search for gravitational waves from the low-mass X-Ray binary Scorpius X-1 in LIGO O3 data

    Get PDF
    We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25Hz to 1600Hz, as well as ranges in orbital speed, frequency and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100Hz and 200Hz, correspond to an amplitude h0 of about 1e-25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4e-26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically-marginalized upper limits are close to the predicted amplitude from about 70Hz to 100Hz; the limits assuming the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40Hz to 200Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500Hz or more

    The Wilkes subglacial basin eastern margin electrical conductivity anomaly

    No full text
    We have analyzed the deep conductivity structure at the transition between the Transantarctic Mountains (TAM) and the eastern margin of the WSB in NVL, by means of the GDS (Geomagnetic Deep Sounding) technique, in order to constrain the geodynamical interpretation of this antarctic sector. The TAM form the uplifted flank of the Mesozoic and Cenozoic West Antarctic Rift System. Structure of the TAM rift flank has been partially investigated with different geophysical approaches.The Wilkes Subglacial Basin is a broad depression over 400 km wide at the George V Coast and 1200 km long. Geology, lithospheric structure and tectonics of the Basin are only partially known because the Basin is buried beneath the East Antarctic Ice Sheet and is located in a remote region which makes geophysical exploration logistically challenging. Different authors have proposed contrasting hypothesis regarding the origin of the WSB: it could represent a region of rifted continental crust, or it may have a flexural origin or might represent an "extended terrane". Recently aerogeophysical investigations have demonstrated a strong structural control on the margin. Magnetovariational studies carried out at high geomagnetic latitudes are often hampered by source effects, mainly due to the closeness to the Polar Electrojet currents systems (PEJ). Its presence, in fact, makes the uniform magnetic field assumption, on which the magnetovariational methods are based on, often invalid, which outcome is a bias in the GDS transfer functions and to compromise the reliability of the inverted models. Data from the aforementioned campaigns have been then processed under the ISEE project (Ice Sheet Electromag- netic Experiment), aimed at evaluate and mitigate the bias effect of the PEJ on geomagnetic an magnetotelluric transfer functions at high geomagnetic latitudes, by means of suitable processing algorithms, developed upon a statistical analysis study on PEJ effects (Rizzello et al. 2013). Recent results allowed for a new processing of a wide dataset acquired during three different international Antarctic campaigns supported by the Italian Antarctic Project: the BACKTAM, WIBEM and WISE expeditions. The qualitative analysis of the induction arrows, in the period range 20-170 s, reveals an approximately 2D regional electrical conductivity pattern with a clear differentiation between the three Terrains crossed by the GDS transect we have re-analized: the Robertson Bay, the Bowers and the Wilson Terrain. Bi-dimensional conductivity models, jointly with magnetic and gravimetric profiles, suggest a differentiation of the investigated area in three crustal sectors separated by the Daniels Range and the Bowers Mts., in close relation with main known structural lineaments; to the West, a deep conductivity anomaly is associated with the transition to the Wilkes Subglagial Basin. We deem that such anomaly, together with the magnetic and gravimetric signatures, is compatible with an extensional regime in the eastern margin of the WS
    corecore