Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run

Abstract

We describe a search for gravitational waves from compact binaries with atleast one component with mass 0.2 MM_\odot -- 1.0M1.0 M_\odot and mass ratio q0.1q\geq 0.1 in Advanced LIGO and Advanced Virgo data collected between 1 November2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. Themost significant candidate has a false alarm rate of 0.2 yr1\mathrm{yr}^{-1}. Weestimate the sensitivity of our search over the entirety of Advanced LIGO's andAdvanced Virgo's third observing run, and present the most stringent limits todate on the merger rate of binary black holes with at least one subsolar-masscomponent. We use the upper limits to constrain two fiducial scenarios thatcould produce subsolar-mass black holes: primordial black holes (PBH) and amodel of dissipative dark matter. The PBH model uses recent prescriptions forthe merger rate of PBH binaries that include a rate suppression factor toeffectively account for PBH early binary disruptions. If the PBHs aremonochromatically distributed, we can exclude a dark matter fraction in PBHsfPBH0.6f_\mathrm{PBH} \gtrsim 0.6 (at 90% confidence) in the probed subsolar-massrange. However, if we allow for broad PBH mass distributions we are unable torule out fPBH=1f_\mathrm{PBH} = 1. For the dissipative model, where the dark matterhas chemistry that allows a small fraction to cool and collapse into blackholes, we find an upper bound $f_{\mathrm{DBH}} atomic dark matter collapsed into black holes.<br

    Similar works