332 research outputs found

    ABC de lillustration en Alsace

    Get PDF
    La proportion importante dillustrateurs formés en Alsace dans la production actuelle et les palmarès pourrait nous porter à nous demander si la région a hérité dune recette secrète : fabrique-t-on des illustrateurs comme des bredeles ? Pas si sû

    Cervical artery dissection in patients >= 60 years Often painless, few mechanical triggers

    Get PDF
    Objective: In a cohort of patients diagnosed with cervical artery dissection (CeAD), to determine the proportion of patients aged >= 60 years and compare the frequency of characteristics (presenting symptoms, risk factors, and outcome) in patients aged = 60 years. Methods: We combined data from 3 large cohorts of consecutive patients diagnosed with CeAD (i. e., Cervical Artery Dissection and Ischemic Stroke Patients-Plus consortium). We dichotomized cases into 2 groups, age >= 60 and Results: Among 2,391 patients diagnosed with CeAD, we identified 177 patients (7.4%) aged >= 60 years. In this age group, cervical pain (ORadjusted 0.47 [0.33-0.66]), headache (ORadjusted 0.58 [0.42-0.79]), mechanical trigger events (ORadjusted 0.53 [0.36-0.77]), and migraine (ORadjusted 0.58 [0.39-0.85]) were less frequent than in younger patients. In turn, hypercholesterolemia (ORadjusted 1.52 [1.1-2.10]) and hypertension (ORadjusted 3.08 [2.25-4.22]) were more frequent in older patients. Key differences between age groups were confirmed in secondary analyses. In multivariable, adjusted analyses, favorable outcome (i. e., modified Rankin Scale score 0-2) was less frequent in the older age group (ORadjusted 0.45 [0.25, 0.83]). Conclusion: In our study population of patients diagnosed with CeAD, 1 in 14 was aged >= 60 years. In these patients, pain and mechanical triggers might be missing, rendering the diagnosis more challenging and increasing the risk ofmissed CeAD diagnosis in older patients.Peer reviewe

    The circadian clock, metabolism and obesity

    Get PDF
    In the last decades, obesity has been on the rise becoming a burden for health care systems. The reasons behind this rise are most likely caused by lifestyle rather than by an increase in gene mutations, because manifestations of genetic alterations would take longer than just a few decades. Lifestyle has a great impact on the circadian system and therefore on the body internal organization of physiological and biochemical processes, regulating various aspects of behavior and metabolism. In the following, I will discuss recent studies delineating relationships between metabolic processes and the circadian system, how metabolites and nutrients regulate the circadian clock and how nuclear receptors can act as metabolic sensors and clock regulators. Finally, I will discuss how clock modulation and feeding patterns influence the development of obesity

    The hepatic BMAL1/AKT/lipogenesis axis protects against alcoholic liver disease in mice via promoting PPARα pathway

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146413/1/hep29878_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146413/2/hep29878.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146413/3/hep29878-sup-0001-suppinfo.pd

    M1-derived extracellular vesicles polarize recipient macrophages into M2-like macrophages and alter skeletal muscle homeostasis in a hyper-glucose environment

    Get PDF
    Background Macrophages release not only cytokines but also extracellular vesicles (EVs). which are small membrane-derived nanovesicles with virus-like properties transferring cellular material between cells. Until now, the consequences of macrophage plasticity on the release and the composition of EVs have been poorly explored. In this study, we determined the impact of high-glucose (HG) concentrations on macrophage metabolism, and characterized their derived-EV subpopulations. Finally, we determined whether HG-treated macrophage-derived EVs participate in immune responses and in metabolic alterations of skeletal muscle cells.Methods THP1-macrophages were treated with 15mM (MG15) or 30mM (MG30) glucose. Then, M1/M2 canonical markers, pro- and anti-inflammatory cytokines, activities of proteins involved in glycolysis or oxidative phosphorylation were evaluated. Macrophage-derived EVs were characterized by TEM, NTA, MRSP, and 1H-Nuclear magnetic resonance spectroscopy for lipid composition. Macrophages or C2C12 muscle cells were used as recipients of MG15 and MG30-derived EVs. The lipid profiles of recipient cells were determined, as well as proteins and mRNA levels of relevant genes for macrophage polarization or muscle metabolism.Results Untreated macrophages released small and large EVs (sEVs, lEVs) with different lipid distributions. Proportionally to the glucose concentration, glycolysis was induced in macrophages, associated to mitochondrial dysfunction, triacylglycerol and cholesterol accumulation. In addition, MG15 and MG30 macrophages had increased level of CD86 and increase release of pro-inflammatory cytokines. HG also affected macrophage sphingolipid and phospholipid compositions. The differences in the lipid profiles between sEVs and lEVs were abolished and reflected the lipid alterations in MG15 and MG30 macrophages. Interestingly, MG15 and MG30 macrophages EVs induced the expression of CD163, Il-10 and increased the contents of triacylglycerol and cholesterol in recipient macrophages. MG15 lEVs and sEVs induced insulin-induced AKT hyper-phosphorylation and accumulation of triacylglycerol in myotubes, a state observed in pre-diabetes. Conversely, MG30 lEVs and sEVs induced insulin-resistance in myotubes.Conclusions As inflammation involves first M1 macrophages, then the activation of M2 macrophages to resolve inflammation, this study demonstrates that the dialog between macrophages through the EV route is an intrinsic part of the inflammatory response. In a hyperglycemic context, EV macrophages could participate in the development of muscle insulin-resistance and chronic inflammation

    Nocturnin Expression Is Induced by Fasting in the White Adipose Tissue of Restricted Fed Mice

    Get PDF
    The relationship between circadian clocks and metabolism is intimate and complex and a number of recent studies have begun to reveal previously unknown effects of food and its temporal availability on the clock and the rhythmic transcriptome of peripheral tissues. Nocturnin, a circadian deadenylase, is expressed rhythmically in a wide variety of tissues, but we report here that Nocturnin expression is arrhythmic in epididymal white adipose tissue (eWAT) of mice housed in 12∶12 LD with ad libitum access to food. However, Nocturnin expression becomes rhythmic in eWAT of mice placed on restricted feeding. We show here that Nocturnin's rhythmic expression pattern is not dependent upon feeding, nor is it acutely induced by feeding in the liver or eWAT of ad libitum fed mice. However, Nocturnin is acutely induced by the absence of the expected meal in eWAT of restricted fed mice. A rise in cAMP levels also induces Nocturnin expression, suggesting that Nocturnin's induction in eWAT by fasting is likely mediated through the same pathways that activate lipolysis. Therefore, this suggests that Nocturnin plays a role in linking nutrient sensing by the circadian clock to lipid mobilization in the adipocytes

    Circadian Phase Resetting via Single and Multiple Control Targets

    Get PDF
    Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm) out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness
    corecore