154 research outputs found
Systematic review of interventions to encourage careers in academic medicine
Aims: Academic medicine is a career route that historically struggles to recruit and retain suitable doctors. The aim of this paper is to review the evidence for interventions to encourage careers in academic medicine by way of a descriptive systematic review. Methods: Key databases were searched in February 2017. Studies that evaluated interventions to encourage careers in academic medicine and that used a pre–post analysis or included a comparison group were included. Interventions reporting only learner satisfaction were excluded. The review was specific to medical students and graduates. Results: Twenty-four studies were identified for inclusion within the review. The included studies identified interventions across five domains: postgraduate funding, postgraduate training, mentoring, undergraduate interventions, and institutional change. The papers varied in terms of strength of conclusion and method of analysis with broad, structured, well-funded programs having the most palpable results. Conclusions: The five domains identified offer a framework that can be used by institutions who wish to develop similar programs. It also offers a body of research on which an evidence base can be built
Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease
We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)
Gaia Focused Product Release: A catalogue of sources around quasars to search for strongly lensed quasars
Context. Strongly lensed quasars are fundamental sources for cosmology. The
Gaia space mission covers the entire sky with the unprecedented resolution of
" in the optical, making it an ideal instrument to search for
gravitational lenses down to the limiting magnitude of 21. Nevertheless, the
previous Gaia Data Releases are known to be incomplete for small angular
separations such as those expected for most lenses. Aims. We present the Data
Processing and Analysis Consortium GravLens pipeline, which was built to
analyse all Gaia detections around quasars and to cluster them into sources,
thus producing a catalogue of secondary sources around each quasar. We analysed
the resulting catalogue to produce scores that indicate source configurations
that are compatible with strongly lensed quasars. Methods. GravLens uses the
DBSCAN unsupervised clustering algorithm to detect sources around quasars. The
resulting catalogue of multiplets is then analysed with several methods to
identify potential gravitational lenses. We developed and applied an outlier
scoring method, a comparison between the average BP and RP spectra of the
components, and we also used an extremely randomised tree algorithm. These
methods produce scores to identify the most probable configurations and to
establish a list of lens candidates. Results. We analysed the environment of 3
760 032 quasars. A total of 4 760 920 sources, including the quasars, were
found within 6" of the quasar positions. This list is given in the Gaia
archive. In 87\% of cases, the quasar remains a single source, and in 501 385
cases neighbouring sources were detected. We propose a list of 381 lensed
candidates, of which we identified 49 as the most promising. Beyond these
candidates, the associate tables in this Focused Product Release allow the
entire community to explore the unique Gaia data for strong lensing studies
further.Comment: 35 pages, 60 figures, accepted for publication by Astronomy and
Astrophysic
Gaia Early Data Release 3 Acceleration of the Solar System from Gaia astrometry
Context. Gaia Early Data Release 3 (Gaia EDR3) provides accurate astrometry for about 1.6 million compact (QSO-like) extragalactic sources, 1.2 million of which have the best-quality five-parameter astrometric solutions. Aims. The proper motions of QSO-like sources are used to reveal a systematic pattern due to the acceleration of the solar systembarycentre with respect to the rest frame of the Universe. Apart from being an important scientific result by itself, the acceleration measured in this way is a good quality indicator of the Gaia astrometric solution. Methods. Theeffect of the acceleration was obtained as a part of the general expansion of the vector field of proper motions in vector spherical harmonics (VSH). Various versions of the VSH fit and various subsets of the sources were tried and compared to get the most consistent result and a realistic estimate of its uncertainty. Additional tests with the Gaia astrometric solution were used to get a better idea of the possible systematic errors in the estimate. Results. Our best estimate of the acceleration based on Gaia EDR3 is (2.32 +/- 0.16) x 10(-10) m s(-2) (or 7.33 +/- 0.51 km s(-1) Myr-1) towards alpha = 269.1 degrees +/- 5.4 degrees, delta = -31.6 degrees +/- 4.1 degrees, corresponding to a proper motion amplitude of 5.05 +/- 0.35 mu as yr(-1). This is in good agreement with the acceleration expected from current models of the Galactic gravitational potential. We expect that future Gaia data releases will provide estimates of the acceleration with uncertainties substantially below 0.1 mu as yr(-1).Peer reviewe
Gaia Focused Product Release: Radial velocity time series of long-period variables
The third Gaia Data Release (DR3) provided photometric time series of more
than 2 million long-period variable (LPV) candidates. Anticipating the
publication of full radial-velocity (RV) in DR4, this Focused Product Release
(FPR) provides RV time series for a selection of LPVs with high-quality
observations. We describe the production and content of the Gaia catalog of LPV
RV time series, and the methods used to compute variability parameters
published in the Gaia FPR. Starting from the DR3 LPVs catalog, we applied
filters to construct a sample of sources with high-quality RV measurements. We
modeled their RV and photometric time series to derive their periods and
amplitudes, and further refined the sample by requiring compatibility between
the RV period and at least one of the , , or
photometric periods. The catalog includes RV time series and variability
parameters for 9\,614 sources in the magnitude range , including a flagged top-quality subsample of 6\,093 stars
whose RV periods are fully compatible with the values derived from the ,
, and photometric time series. The RV time series
contain a mean of 24 measurements per source taken unevenly over a duration of
about three years. We identify the great most sources (88%) as genuine LPVs,
with about half of them showing a pulsation period and the other half
displaying a long secondary period. The remaining 12% consists of candidate
ellipsoidal binaries. Quality checks against RVs available in the literature
show excellent agreement. We provide illustrative examples and cautionary
remarks. The publication of RV time series for almost 10\,000 LPVs constitutes,
by far, the largest such database available to date in the literature. The
availability of simultaneous photometric measurements gives a unique added
value to the Gaia catalog (abridged)Comment: 36 pages, 38 figure
Gaia Early Data Release 3: Summary of the contents and survey properties
ABSTRACT: Context. We present the early installment of the third Gaia data release, Gaia EDR3, consisting of astrometry and photometry for 1.8 billion sources brighter than magnitude 21, complemented with the list of radial velocities from Gaia DR2.
Aims. A summary of the contents of Gaia EDR3 is presented, accompanied by a discussion on the differences with respect to Gaia DR2 and an overview of the main limitations which are present in the survey. Recommendations are made on the responsible use of Gaia EDR3 results.
Methods. The raw data collected with the Gaia instruments during the first 34 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium and turned into this early third data release, which represents a major advance with respect to Gaia DR2 in terms of astrometric and photometric precision, accuracy, and homogeneity.
Results. Gaia EDR3 contains celestial positions and the apparent brightness in G for approximately 1.8 billion sources. For 1.5 billion of those sources, parallaxes, proper motions, and the (GBP ? GRP) colour are also available. The passbands for G, GBP, and GRP are provided as part of the release. For ease of use, the 7 million radial velocities from Gaia DR2 are included in this release, after the removal of a small number of spurious values. New radial velocities will appear as part of Gaia DR3. Finally, Gaia EDR3 represents an updated materialisation of the celestial reference frame (CRF) in the optical, the Gaia-CRF3, which is based solely on extragalactic sources. The creation of the source list for Gaia EDR3 includes enhancements that make it more robust with respect to high proper motion stars, and the disturbing effects of spurious and partially resolved sources. The source list is largely the same as that for Gaia DR2, but it does feature new sources and there are some notable changes. The source list will not change for Gaia DR3. Conclusions. Gaia EDR3 represents a significant advance over Gaia DR2, with parallax precisions increased by 30 per cent, proper motion precisions increased by a factor of 2, and the systematic errors in the astrometry suppressed by 30-40% for the parallaxes and by a factor ~2.5 for the proper motions. The photometry also features increased precision, but above all much better homogeneity across colour, magnitude, and celestial position. A single passband for G, GBP, and GRP is valid over the entire magnitude and colour range, with no systematics above the 1% levelThe Gaia mission and data processing have financially been supported by ; the Spanish Ministry of Economy (MINECO/FEDER, UE) through grants ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, RTI2018-095076-B-C21, RTI2018-095076-B-C22, BES-2016-078499, and BES-2017-083126 and the Juan de la Cierva formación 2015 grant FJCI-2015-2671, the Spanish Ministry of Education, Culture, and Sports through grant FPU16/03827, the Spanish Ministry of Science and Innovation (MICINN) through grant
AYA2017-89841P for project “Estudio de las propiedades de los fósiles estelares en el entorno del Grupo Local” and through grant TIN2015-65316-P for project
“Computación de Altas Prestaciones VII
Recommended from our members
Gaia Early Data Release 3: The celestial reference frame (Gaia-CRF3)
Context. Gaia-CRF3 is the celestial reference frame for positions and proper motions in the third release of data from the Gaia mission, Gaia DR3 (and for the early third release, Gaia EDR3, which contains identical astrometric results). The reference frame is defined by the positions and proper motions at epoch 2016.0 for a specific set of extragalactic sources in the (E)DR3 catalogue. Aims. We describe the construction of Gaia-CRF3 and its properties in terms of the distributions in magnitude, colour, and astrometric quality. Methods. Compact extragalactic sources in Gaia DR3 were identified by positional cross-matching with 17 external catalogues of quasi-stellar objects (QSO) and active galactic nuclei (AGN), followed by astrometric filtering designed to remove stellar contaminants. Selecting a clean sample was favoured over including a higher number of extragalactic sources. For the final sample, the random and systematic errors in the proper motions are analysed, as well as the radio-optical offsets in position for sources in the third realisation of the International Celestial Reference Frame (ICRF3). Results. Gaia-CRF3 comprises about 1.6 million QSO-like sources, of which 1.2 million have five-parameter astrometric solutions in Gaia DR3 and 0.4 million have six-parameter solutions. The sources span the magnitude range G = 13-21 with a peak density at 20.6 mag, at which the typical positional uncertainty is about 1 mas. The proper motions show systematic errors on the level of 12 μas yr-1 on angular scales greater than 15 deg. For the 3142 optical counterparts of ICRF3 sources in the S/X frequency bands, the median offset from the radio positions is about 0.5 mas, but it exceeds 4 mas in either coordinate for 127 sources. We outline the future of Gaia-CRF in the next Gaia data releases. Appendices give further details on the external catalogues used, how to extract information about the Gaia-CRF3 sources, potential (Galactic) confusion sources, and the estimation of the spin and orientation of an astrometric solution
Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing
Introduction Late-onset Alzheimer’s disease (LOAD, onset age > 60 years) is the most prevalent dementia in the elderly 1 , and risk is partially driven by genetics 2 . Many of the loci responsible for this genetic risk were identified by genome-wide association studies (GWAS) 3–8 . To identify additional LOAD risk loci, the we performed the largest GWAS to date (89,769 individuals), analyzing both common and rare variants. We confirm 20 previous LOAD risk loci and identify four new genome-wide loci ( IQCK , ACE , ADAM10 , and ADAMTS1 ). Pathway analysis of these data implicates the immune system and lipid metabolism, and for the first time tau binding proteins and APP metabolism. These findings show that genetic variants affecting APP and Aβ processing are not only associated with early-onset autosomal dominant AD but also with LOAD. Analysis of AD risk genes and pathways show enrichment for rare variants ( P = 1.32 × 10 −7 ) indicating that additional rare variants remain to be identified.ADGC. The National Institutes of Health, National Institute on Aging (NIH-NIA) supported this work through the following grants: ADGC, U01 AG032984, RC2 AG036528; Samples from the National Cell Repository for Alzheimer’s Disease (NCRAD), which receives government support under a cooperative agreement grant (U24 AG21886) awarded by the National Institute on Aging (NIA), were used in this study. We thank contributors who collected samples used in this study, as well as patients and their families, whose help and participation made this work possible; Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689-01); NACC, U01 AG016976; NIA LOAD (Columbia University), U24 AG026395, U24 AG026390, R01AG041797; Banner Sun Health Research Institute P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 CA129769, R01 MH080295, R01 AG017173, R01 AG025259, R01 AG048927, R01AG33193, R01 AG009029; Columbia University, P50 AG008702, R37 AG015473, R01 AG037212, R01 AG028786; Duke University, P30 AG028377, AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG006781, UO1 HG004610, UO1 HG006375, U01 HG008657; Indiana University, P30 AG10133, R01 AG009956, RC2 AG036650; Johns Hopkins University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574, R01 AG032990, KL2 RR024151; Mount Sinai School of Medicine, P50 AG005138, P01 AG002219; New York University, P30 AG08051, UL1 RR029893, 5R01AG012101, 5R01AG022374, 5R01AG013616, 1RC2AG036502, 1R01AG035137; North Carolina A&T University, P20 MD000546, R01 AG28786-01A1; Northwestern University, P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG030146, R01 AG01101, RC2 AG036650, R01 AG22018; TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016573; University of California, Los Angeles, P50 AG016570; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383, AG05144; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, AG030653, AG041718, AG07562, AG02365; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, AG010491, AG027944, AG021547, AG019757; University of Washington, P50 AG005136, R01 AG042437; University of Wisconsin, P50 AG033514; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 AG03991, P01 AG026276. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant # NS39764, NIMH MH60451 and by Glaxo Smith Kline. Support was also from the Alzheimer’s Association (LAF, IIRG-08-89720; MP-V, IIRG-05-14147), the US Department of Veterans Affairs Administration, Office of Research and Development, Biomedical Laboratory Research Program, and BrightFocus Foundation (MP-V, A2111048). P.S.G.-H. is supported by Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health Research. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG041232 to AJM and MJH, The Banner Alzheimer’s Foundation, The Johnnie B. Byrd Sr. Alzheimer’s Institute, the Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council, local NHS trusts and Newcastle University), MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council),South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England (HEFCE), Alzheimer’s Research Trust (ART), BRACE as well as North Bristol NHS Trust Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds, Internationale Stiching Alzheimer Onderzoek), Institut de Neuropatologia, Servei Anatomia Patologica, Universitat de Barcelona. ADNI data collection and sharing was funded by the National Institutes of Health Grant U01 AG024904 and Department of Defense award number W81XWH-12-2-0012. ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. We thank Drs. D. Stephen Snyder and Marilyn Miller from NIA who are ex-officio ADGC members.
EADI. This work has been developed and supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease) including funding from MEL (Metropole européenne de Lille), ERDF (European Regional Development Fund) and Conseil Régional Nord Pas de Calais. This work was supported by INSERM, the National Foundation for Alzheimer’s disease and related disorders, the Institut Pasteur de Lille and the Centre National
de Génotypage, the JPND PERADES, GENMED, and the FP7 AgedBrainSysBio. The Three-City Study was performed as part of collaboration between the Institut National de la Santé et de la Recherche Médicale (Inserm), the Victor Segalen Bordeaux II University and Sanofi-
Synthélabo. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also funded by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Agence Française de
Sécurité Sanitaire des Produits de Santé, the Aquitaine and Bourgogne Regional Councils, Agence Nationale de la Recherche, ANR supported the COGINUT and COVADIS projects. Fondation de France and the joint French Ministry of Research/INSERM “Cohortes et collections de données biologiques” programme. Lille Génopôle received an unconditional grant
from Eisai. The Three-city biological bank was developed and maintained by the laboratory for genomic analysis LAG-BRC - Institut Pasteur de Lille. This work was further supported by the CoSTREAM project (http://www.costream.eu/) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement 667375.
Belgium samples: Research at the Antwerp site is funded in part by the Belgian Science Policy Office Interuniversity Attraction Poles program, the Belgian Alzheimer Research Foundation, the Flemish government-initiated Flanders Impulse Program on Networks for Dementia Research (VIND) and the Methusalem excellence program, the Research Foundation Flanders (FWO), and the University of Antwerp Research Fund, Belgium. The Antwerp site authors thank the personnel of the VIB Neuromics Support Facility, the Biobank of the Institute Born-Bunge and neurology departments at the contributing hospitals. The authors acknowledge the members of the BELNEU consortium for their contributions to the clinical and pathological characterization of Belgium patients and the personnel of the Diagnostic Service Facility for the genetic testing.
Finish sample collection: Financial support for this project was provided by Academy of Finland (grant number 307866), Sigrid Jusélius Foundation and the Strategic Neuroscience Funding of the University of Eastern Finland.
Swedish sample collection: Financially supported in part by the Swedish Brain Power network, the Marianne and Marcus Wallenberg Foundation, the Swedish Research Council (521-2010-3134, 2015-02926), the King Gustaf V and Queen Victoria’s Foundation of Freemasons, the Regional Agreement on Medical Training and Clinical Research (ALF) between Stockholm County Council and the Karolinska Institutet, the Swedish Brain Foundation and the Swedish Alzheimer Foundation”.
CHARGE. Infrastructure for the CHARGE Consortium is supported in part by National Heart, Lung, and Blood Institute grant HL105756 (Psaty) and RC2HL102419 (Boerwinkle) and the neurology working group by grants from the National Institute on Aging, R01 AG033193, U01 AG049505 and U01AG52409.
Rotterdam (RS). This study was funded by the Netherlands Organisation for Health Research and Development (ZonMW) as part of the Joint Programming for Neurological Disease (JPND)as part of the PERADES Program (Defining Genetic Polygenic, and Environmental Risk for Alzheimer’s disease using multiple powerful cohorts, focused Epigenetics and Stem cell metabolomics), Project number 733051021. This work was funded also by the European Union Innovative Medicine Initiative (IMI) programme under grant agreement No. 115975 as part of the Alzheimer’s Disease Apolipoprotein Pathology for Treatment Elucidation and Development (ADAPTED, https://www.imi-adapted.eu);and the European Union’s Horizon 2020 research and innovation programme as part of the Common mechanisms and pathways in Stroke and Alzheimer’s disease CoSTREAM project (www.costream.eu, grant agreement No. 667375). The current study is supported by the Deltaplan Dementie and Memorabel supported by ZonMW (Project number 733050814) and Alzheimer Nederland.
The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study (RS-I, RS-II, RS-III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS datasets are supported by the Netherlands Organization of Scientific Research NWO Investments (Project number 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project number 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the GWAS database, and Karol Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-Gomez, MSc, for the creation and analysis of imputed data.
AGES. The AGES study has been funded by NIA contracts N01-AG-12100 and HHSN271201200022C with contributions from NEI, NIDCD, and NHLBI, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament).
Cardiovascular Health Study (CHS). This research was supported by contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, and N01HC85086 and grant U01HL080295 and U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), with additional
contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG033193, R01AG023629, R01AG15928, and R01AG20098 and by U01AG049505 from the National Institute on Aging (NIA). The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology
Research Center. A full list of CHS principal investigators and institutions can be found at https://chs-nhlbi.org/. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health.
Framingham Heart Study. This work was supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (contracts N01-HC-25195 and HHSN268201500001I). This study was also supported by grants from the National Institute on Aging: R01AG033193,
U01AG049505, U01AG52409, R01AG054076 (S. Seshadri). S. Seshadri and A.L.D. were also supported by additional grants from the National Institute on Aging (R01AG049607, R01AG033040) and the National Institute of Neurological Disorders and Stroke (R01- NS017950, NS100605). The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health. GR@ACE cohort. Fundació ACE We would like to thank patients and controls who participated in this project. Genome Resesarch @ Fundació ACE project (GR@ACE) is supported by
Fundación bancaria “La Caixa”, Grifols SA, Fundació ACE and ISCIII. We also want to thank other private sponsors supporting the basic and clinical projects of our institution (Piramal AG, Laboratorios Echevarne, Araclon Biotech S.A. and Fundació ACE). We are indebted to Trinitat
Port-Carbó legacy and her family for their support of Fundació ACE research programs. Fundació ACE collaborates with the Centro de Investigación Biomédica en Red sobreEnfermedades Neurodegenerativas (CIBERNED, Spain) and is one of the participating centers of the Dementia Genetics Spanish Consortium (DEGESCO). A.R. and M.B. are receiving
support from the European Union/EFPIA Innovative Medicines Initiative Joint Undertaking ADAPTED and MOPEAD projects (Grants No. 115975 and 115985 respectively). M.B. and A.R. are also supported by national grants PI13/02434, PI16/01861 and PI17/01474. Acción
Estratégica en Salud integrated in the Spanish National R + D + I Plan and funded by ISCIII (Instituto de Salud Carlos III)-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER- “Una manera de Hacer Europa”). Control samples and data from patients included in this study were provided in part by the National DNA Bank Carlos III (www.bancoadn.org, University of Salamanca, Spain) and Hospital Universitario Virgen de Valme (Sevilla, Spain) and they were processed following standard operating procedures with the appropriate approval of the Ethical and Scientific Committee.
GERAD/PERADES. We thank all individuals who participated in this study. Cardiff University was supported by the Wellcome Trust, Alzheimer’s Society (AS; grant RF014/164), the Medical Research Council (MRC; grants G0801418/1, MR/K013041/1, MR/L023784/1), the European
Joint Programme for Neurodegenerative Disease (JPND, grant MR/L501517/1), Alzheimer’s Research UK (ARUK, grant ARUK-PG2014-1), Welsh Assembly Government (grant SGR544:CADR), a donation from the Moondance Charitable Foundation, and the UK Dementia Research Institute at Cardiff. Cambridge University acknowledges support from the MRC. ARUK supported sample collections at the Kings College London, the South West Dementia Bank, Universities of Cambridge, Nottingham, Manchester and Belfast. King’s College London was supported by the NIHR Biomedical Research Centre for Mental Health and Biomedical
Research Unit for Dementia at the South London and Maudsley NHS Foundation Trust and Kings College London and the MRC. Alzheimer’s Research UK (ARUK) and the Big Lottery Fund provided support to Nottingham University. Ulster Garden Villages, AS, ARUK, American Federation for Aging Research, NI R&D Office and the Royal College of Physicians/Dunhill Medical Trust provided support for Queen’s University, Belfast. The University of Southampton acknowledges support from the AS. The MRC and Mercer’s Institute for Research on Ageing supported the Trinity College group. DCR is a Wellcome Trust Principal Research fellow. The South West Dementia Brain Bank acknowledges support from Bristol Research into Alzheimer’s and Care of the Elderly. The Charles Wolfson Charitable Trust supported the OPTIMA group. Washington University was funded by NIH grants, Barnes Jewish Foundation and the Charles and Joanne Knight Alzheimer’s Research Initiative. Patient recruitment for the MRC Prion Unit/UCL Department of Neurodegenerative Disease collection was supported by the UCLH/UCL Biomed- ical Centre and their work was supported by the NIHR Queen Square Dementia BRU. LASER-AD was funded by Lundbeck SA. The Bonn group would like to thank Dr. Heike Koelsch for her scientific support. The Bonn group was funded by the German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant number 01GI0102, 01GI0711, 01GI0420. The AgeCoDe study group was supported by the German Federal Ministry for Education and Research grants 01 GI 0710, 01 GI 0712, 01 GI 0713, 01 GI 0714, 01 GI 0715, 01 GI 0716, 01 GI 0717. Genotyping of the Bonn case-control sample was funded by the German centre for Neurodegenerative Diseases (DZNE), Germany. The GERAD Consortium also used samples ascertained by the NIMH AD Genetics Initiative. HH was supported by a grant of the Katharina-Hardt-Foundation, Bad Homburg vor der Höhe, Germany. The KORA F4 studies were financed by Helmholtz Zentrum München; German Research Center for Environmental Health; BMBF; German National Genome Research Network and the Munich Center of Health Sciences. The Heinz Nixdorf Recall cohort was funded by the Heinz Nixdorf Foundation (Dr. Jur. G.Schmidt, Chairman) and BMBF. Coriell Cell Repositories is supported by NINDS and the Intramural Research Program of the National Institute on Aging. We acknowledge use of genotype data from the 1958 Birth Cohort collection, funded by the MRC and the Wellcome Trust which was genotyped by the Wellcome Trust Case Control Consortium and the Type-1 Diabetes Genetics Consortium, sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Allergy and
Infectious Diseases, National Human Genome Research Institute, National Institute of Child Health and Human Development and Juvenile Diabetes Research Foundation International.
The Bonn samples are part of the German Dementia Competance Network (DCN) and the German Research Network on Degenerative Dementia (KNDD), which are funded by the German Federal Ministry of Education and Research (grants KND: 01G10102, 01GI0420,
01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434; grants KNDD: 01GI1007A, 01GI0710, 01GI0711, 01GI0712, 01GI0713, 01GI0714, 01GI0715, 01GI0716, 01ET1006B). Markus M Nothen is a member of the German Research Foundation (DFG) cluster of excellence ImmunoSensation. Funding for Saarland University was provided by the German Federal Ministry of Education and Research (BMBF), grant number 01GS08125 to Matthias Riemenschneider. The University of Washington was supported by grants from the National Institutes of Health (R01-NS085419 and R01-AG044546), the Alzheimer’s Association (NIRG-11-200110) and the American Federation for Aging Research (Carlos Cruchaga was recipient of a New Investigator Award in Alzhei
Pulsations in main sequence OBAF-type stars
CONTEXT: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators (M ≥ 1.3 M⊙) of spectral types O, B, A, or F, known as β Cep, slowly pulsating B (SPB), δ Sct, and γ Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. AIMS: We investigate the extent to which the sparse Gaia DR3 data can be used to detect OBAF-type pulsators and discriminate them from other types of variables. We aim to probe the empirical instability strips and compare them with theoretical predictions. The most populated variability class is that of the δ Sct variables. For these stars, we aim to confirm their empirical period-luminosity (PL) relation, and verify the relation between their oscillation amplitude and rotation. METHODS: All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the v sin i data were taken from the Gaia DR3 esphs tables. The δ Sct PL relation was derived using the same photometric parallax method as the one recently used to establish the PL relation for classical Cepheids using Gaia data. RESULTS: We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell (HR) diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive period–luminosity relation for δ Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. We demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of δ Sct stars. CONCLUSIONS: The Gaia DR3 time-series photometry already allows for the detection of the dominant (non-)radial oscillation mode in about 100 000 intermediate- and high-mass dwarfs across the entire sky. This detection capability will increase as the time series becomes longer, allowing the additional delivery of frequencies and amplitudes of secondary pulsation modes
Gaia Data Release 3: Mapping the asymmetric disc of the Milky Way
With the most recent Gaia data release the number of sources with complete 6D
phase space information (position and velocity) has increased to well over 33
million stars, while stellar astrophysical parameters are provided for more
than 470 million sources, in addition to the identification of over 11 million
variable stars. Using the astrophysical parameters and variability
classifications provided in Gaia DR3, we select various stellar populations to
explore and identify non-axisymmetric features in the disc of the Milky Way in
both configuration and velocity space. Using more about 580 thousand sources
identified as hot OB stars, together with 988 known open clusters younger than
100 million years, we map the spiral structure associated with star formation
4-5 kpc from the Sun. We select over 2800 Classical Cepheids younger than 200
million years, which show spiral features extending as far as 10 kpc from the
Sun in the outer disc. We also identify more than 8.7 million sources on the
red giant branch (RGB), of which 5.7 million have line-of-sight velocities,
allowing the velocity field of the Milky Way to be mapped as far as 8 kpc from
the Sun, including the inner disc. The spiral structure revealed by the young
populations is consistent with recent results using Gaia EDR3 astrometry and
source lists based on near infrared photometry, showing the Local (Orion) arm
to be at least 8 kpc long, and an outer arm consistent with what is seen in HI
surveys, which seems to be a continuation of the Perseus arm into the third
quadrant. Meanwhile, the subset of RGB stars with velocities clearly reveals
the large scale kinematic signature of the bar in the inner disc, as well as
evidence of streaming motions in the outer disc that might be associated with
spiral arms or bar resonances. (abridged
- …