74 research outputs found

    Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    Get PDF
    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified gamma-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modelling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of gamma-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.Comment: 11 pages, 5 tables, 1 figure, 4 online tables. ApJ submitted and referee

    The Double Pulsar Eclipses I: Phenomenology and Multi-frequency Analysis

    Get PDF
    The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise around conjunction when the radio waves emitted by pulsar A are absorbed as they propagate through the magnetosphere of its companion pulsar B. These eclipses offer a unique opportunity to probe directly the magnetospheric structure and the plasma properties of pulsar B. We have performed a comprehensive analysis of the eclipse phenomenology using multi-frequency radio observations obtained with the Green Bank Telescope. We have characterized the periodic flux modulations previously discovered at 820 MHz by McLaughlin et al., and investigated the radio frequency dependence of the duration and depth of the eclipses. Based on their weak radio frequency evolution, we conclude that the plasma in pulsar B's magnetosphere requires a large multiplicity factor (~ 10^5). We also found that, as expected, flux modulations are present at all radio frequencies in which eclipses can be detected. Their complex behavior is consistent with the confinement of the absorbing plasma in the dipolar magnetic field of pulsar B as suggested by Lyutikov & Thompson and such a geometric connection explains that the observed periodicity is harmonically related to pulsar B's spin frequency. We observe that the eclipses require a sharp transition region beyond which the plasma density drops off abruptly. Such a region defines a plasmasphere which would be well inside the magnetospheric boundary of an undisturbed pulsar. It is also two times smaller than the expected standoff radius calculated using the balance of the wind pressure from pulsar A and the nominally estimated magnetic pressure of pulsar B.Comment: 9 pages, 7 figures, 3 tables, ApJ in pres

    CoRoT measures solar-like oscillations and granulation in stars hotter than the Sun

    Full text link
    Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.Comment: 7 pages, 4 figure

    LOFAR discovery of the fastest-spinning millisecond pulsar in the Galactic field

    Get PDF
    We report the discovery of PSR J0952-0607, a 707-Hz binary millisecond pulsar which is now the fastest-spinning neutron star known in the Galactic field (i.e., outside of a globular cluster). PSR J0952-0607 was found using LOFAR at a central observing frequency of 135 MHz, well below the 300 MHz to 3 GHz frequencies typically used in pulsar searches. The discovery is part of an ongoing LOFAR survey targeting unassociated Fermi Large Area Telescope γ\gamma-ray sources. PSR J0952-0607 is in a 6.42-hr orbit around a very low-mass companion (Mc0.02M_\mathrm{c}\gtrsim0.02 M_\odot) and we identify a strongly variable optical source, modulated at the orbital period of the pulsar, as the binary companion. The light curve of the companion varies by 1.6 mag from r=22.2r^\prime=22.2 at maximum to r>23.8r^\prime>23.8, indicating that it is irradiated by the pulsar wind. Swift observations place a 3-σ\sigma upper limit on the 0.3100.3-10 keV X-ray luminosity of LX<1.1×1031L_X < 1.1 \times 10^{31} erg s1^{-1} (using the 0.97 kpc distance inferred from the dispersion measure). Though no eclipses of the radio pulsar are observed, the properties of the system classify it as a black widow binary. The radio pulsed spectrum of PSR J0952-0607, as determined through flux density measurements at 150 and 350 MHz, is extremely steep with α3\alpha\sim-3 (where SναS \propto \nu^{\alpha}). We discuss the growing evidence that the fastest-spinning radio pulsars have exceptionally steep radio spectra, as well as the prospects for finding more sources like PSR J0952-0607.Comment: 9 pages, 3 figures, 1 table, published in ApJ letter

    The Evolution of PSR J0737-3039B and a Model for Relativistic Spin Precession

    Full text link
    We present the evolution of the radio emission from the 2.8-s pulsar of the double pulsar system PSR J0737-3039A/B. We provide an update on the Burgay et al. (2005) analysis by describing the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar's radio disappearance in 2008 March. Over this time, the flux density decreases by 0.177 mJy/yr at the brightest orbital phases and the pulse profile evolves from a single to a double peak, with a separation rate of 2.6 deg/yr. The pulse profile changes are most likely caused by relativistic spin precession, but can not be easily explained with a circular hollow-cone beam as in the model of Clifton & Weisberg (2008). Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well. This particular beam shape predicts geometrical parameters for the two bright orbital phases which are consistent and similar to those derived by Breton et al. (2008). However, the observed decrease in flux over time and B's eventual disappearance cannot be easily explained by the model and may be due to the changing influence of A on B.Comment: 20 pages, 18 figures, Accepted by ApJ on 2 August 201

    Dynamics of brain networks in aesthetic appreciation

    Full text link
    Neuroimage experiments have been essential for identifying active brain networks. During cognitive tasks as in, e.g., aesthetic appreciation, such networks include regions that belong to the default mode network (DMN). Theoretically, DMN activity should be interrupted during cognitive tasks demanding attention, as is the case for aesthetic appreciation. Analyzing the functional connectivity dynamics along three temporal windows and two conditions, beautiful and not beautiful stimuli, here we report experimental support for the hypothesis that aesthetic appreciation relies on the activation of two different networks, an initial aesthetic network and a delayed aesthetic network, engaged within distinct time frames. Activation of the DMN might correspond mainly to the delayed aesthetic network. We discuss adaptive and evolutionary explanations for the relationships existing between the DMN and aesthetic networks and offer unique inputs to debates on the mind/brain interaction

    Constraining the optical emission from the double pulsar system J0737-3039

    Full text link
    We present the first optical observations of the unique system J0737-3039 (composed of two pulsars, hereafter PSR-A and PSR-B). Ultra-deep optical observations, performed with the High Resolution Camera of the Advanced Camera for Surveys on board the Hubble Space Telescope could not detect any optical emission from the system down to m_F435W=27.0 and m_F606W=28.3. The estimated optical flux limits are used to constrain the three-component (two thermal and one non-thermal) model recently proposed to reproduce the XMM-Newton X-ray spectrum. They suggest the presence of a break at low energies in the non-thermal power law component of PSR-A and are compatible with the expected black-body emission from the PSR-B surface. The corresponding efficiency of the optical emission from PSR-A's magnetosphere would be comparable to that of other Myr-old pulsars, thus suggesting that this parameter may not dramatically evolve over a time-scale of a few Myr.Comment: 16 pages, 3 figures, ApJ accepte

    Formation and evolution of compact binaries in globular clusters: II. Binaries with neutron stars

    Full text link
    In this paper, the second of a series, we study the stellar dynamical and evolutionary processes leading to the formation of compact binaries containing neutron stars (NSs) in dense globular clusters (GCs). For this study, 70 dense clusters were simulated independently, with a total stellar mass ~2x10^7Msun, exceeding the total mass of all dense GCs in our Galaxy. We find that, in order to reproduce the empirically derived formation rate of low-mass X-ray binaries (LMXBs), we must assume that NSs can be formed via electron-capture supernovae (ECS) with typical natal kicks smaller than in core-collapse supernovae. Our results explain the observed dependence of the number of LMXBs on ``collision number'' as well as the large scatter observed between different GCs. We predict that the number of quiescent LMXBs in different GCs should not have a strong metallicity dependence. In our cluster model the following mass-gaining events create populations of MSPs that do not match the observations: (i) accretion during a common envelope event with a NS formed through ECS, and (ii) mass transfer (MT) from a WD donor. Some processes lead only to a mild recycling. In addition, for MSPs, we distinguish low-magnetic-field (long-lived) and high-magnetic-field (short-lived) populations. With this distinction and by considering only those mass-gaining events that appear to lead to NS recycling, we obtain good agreement of our models with the numbers and characteristics of observed MSPs in 47 Tuc and Terzan 5, as well as with the cumulative statistics for MSPs detected in GCs of different dynamical properties. We find that significant production of merging double NSs potentially detectable as short gamma-ray bursts occurs only in very dense, most likely core-collapsed GCs. (abridged)Comment: 25 pages, 7 figures, 12 tables, MNRAS accepte

    A black widow population dissection through HiPERCAM multi-band light curve modelling

    Get PDF
    Black widows are extreme millisecond pulsar binaries where the pulsar wind ablates their low-mass companion stars. In the optical range, their light curves vary periodically due to the high irradiation and tidal distortion of the companion, which allows us to infer the binary parameters. We present simultaneous multi-band observations obtained with the HIPERCAM instrument at the 10.4-m GTC telescope for six of these systems. The combination of this five-band (usgsrsiszs) fast photometer with the world’s largest optical telescope enables us to inspect the light curve range near minima. We present the first light curve for PSR J1641+8049, as well as attain a significant increase in signal-to-noise and cadence compared with previous publications for the remaining 5 targets: PSR J0023+0923, PSR J0251+2606, PSR J0636+5129, PSR J0952−0607 and PSR J1544+4937. We report on the results of the light curve modelling with the Icarus code for all six systems, which reveals some of the hottest and densest companion stars known. We compare the parameters derived with the limited but steadily growing black widow population for which optical modelling is available. We find some expected correlations, such as that between the companion star mean density and the orbital period of the system, which can be attributed to the high number of Roche-lobe filling companions. On the other hand, the positive correlation between the orbital inclination and the irradiation temperature of the companion is puzzling. We propose such a correlation would arise if pulsars with magnetic axis orthogonal to their spin axis are capable of irradiating their companions to a higher degree

    Properties and Evolution of the Redback Millisecond Pulsar Binary PSR J2129-0429

    Get PDF
    PSR J2129−0429 is a "redback" eclipsing millisecond pulsar binary with an unusually long 15.2 hr orbit. It was discovered by the Green Bank Telescope in a targeted search of unidentified Fermi gamma-ray sources. The pulsar companion is optically bright (mean m_R = 16.6 mag), allowing us to construct the longest baseline photometric data set available for such a system. We present 10 years of archival and new photometry of the companion from the Lincoln Near-Earth Asteroid Research Survey, the Catalina Real-time Transient Survey, the Palomar Transient Factory, the Palomar 60 inch, and the Las Cumbres Observatory Global Telescope. Radial velocity spectroscopy using the Double-Beam Spectrograph on the Palomar 200 inch indicates that the pulsar is massive: 1.74 ± 0.18 M_☉. The G-type pulsar companion has mass 0.44 ± 0.04 M_☉, one of the heaviest known redback companions. It is currently 95 ± 1% Roche-lobe filling and only mildly irradiated by the pulsar. We identify a clear 13.1 mmag yr^(−1) secular decline in the mean magnitude of the companion as well as smaller-scale variations in the optical light curve shape. This behavior may indicate that the companion is cooling. Binary evolution calculations indicate that PSR J2129−0429 has an orbital period almost exactly at the bifurcation period between systems that converge into tighter orbits as black widows and redbacks and those that diverge into wider pulsar–white dwarf binaries. Its eventual fate may depend on whether it undergoes future episodes of mass transfer and increased irradiation
    corecore