9 research outputs found

    Argonaute Autoantibodies as Biomarkers in Autoimmune Neurologic Diseases

    No full text
    International audienceObjective To identify and characterize autoantibodies (Abs) as novel biomarkers for an autoimmune context in patients with central and peripheral neurologic diseases. Methods Two distinct approaches (immunoprecipitation/mass spectrometry\textendash based proteomics and protein microarrays) and patients' sera and CSF were used. The specificity of the identified target was confirmed by cell-based assay (CBA) in 856 control samples. Results Using the 2 methods as well as sera and CSF of patients with central and peripheral neurologic involvement, we identified Abs against the family of Argonaute proteins (mainly AGO1 and AGO2), which were already reported in systemic autoimmunity. AGO-Abs were mostly of immunoglobulin G 1 subclass and conformation dependent. Using CBA, AGO-Abs were detected in 21 patients with a high suspicion of autoimmune neurologic diseases (71.4% were women; median age 57 years) and only in 4/856 (0.5%) controls analyzed by CBA (1 diagnosed with small-cell lung cancer and the other 3 with Sjögren syndrome). Among the 21 neurologic patients identified, the main clinical presentations were sensory neuronopathy (8/21, 38.1%) and limbic encephalitis (6/21, 28.6%). Fourteen patients (66.7%) had autoimmune comorbidities and/or co-occurring Abs, whereas AGO-Abs were the only autoimmune biomarker for the remaining 7/21 (33.3%). Thirteen (61.9%) patients were treated with immunotherapy; 8/13 (61.5%) improved, and 3/13 (23.1%) remained stable, suggesting an efficacy of these treatments. Conclusions AGO-Abs might be potential biomarkers of autoimmunity in patients with central and peripheral nonparaneoplastic neurologic diseases. In 7 patients, AGO-Abs were the only biomarkers; thus, their identification may be useful to suspect the autoimmune character of the neurologic disorder. Classification of Evidence This study provides Class III evidence that AGO-Abs are more frequent in patients with autoimmune neurologic diseases than controls

    Comparative efficacy of fingolimod vs natalizumab: A French multicenter observational study

    Get PDF
    International audienceOBJECTIVE: To compare natalizumab and fingolimod on both clinical and MRI outcomes in patients with relapsing-remitting multiple sclerosis (RRMS) from 27 multiple sclerosis centers participating in the French follow-up cohort Observatoire of Multiple Sclerosis. METHODS: Patients with RRMS included in the study were aged from 18 to 65 years with an Expanded Disability Status Scale score of 0-5.5 and an available brain MRI performed within the year before treatment initiation. The data were collected for 326 patients treated with natalizumab and 303 with fingolimod. The statistical analysis was performed using 2 different methods: logistic regression and propensity scores (inverse probability treatment weighting). RESULTS: The confounder-adjusted proportion of patients with at least one relapse within the first and second year of treatment was lower in natalizumab-treated patients compared to the fingolimod group (21.1% vs 30.4% at first year, p = 0.0092; and 30.9% vs 41.7% at second year, p = 0.0059) and supported the trend observed in nonadjusted analysis (21.2% vs 27.1% at 1 year, p = 0.0775). Such statistically significant associations were also observed for gadolinium (Gd)-enhancing lesions and new T2 lesions at both 1 year (Gd-enhancing lesions: 9.3% vs 29.8%, p \textless 0.0001; new T2 lesions: 10.6% vs 29.6%, p \textless 0.0001) and 2 years (Gd-enhancing lesions: 9.1% vs 22.1%, p = 0.0025; new T2 lesions: 16.9% vs 34.1%, p = 0.0010) post treatment initiation. CONCLUSION: Taken together, these results suggest the superiority of natalizumab over fingolimod to prevent relapses and new T2 and Gd-enhancing lesions at 1 and 2 years. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that for patients with RRMS, natalizumab decreases the proportion of patients with at least one relapse within the first year of treatment compared to fingolimo

    Immunization and multiple sclerosis: Recommendations from the French Multiple Sclerosis Society

    No full text
    International audienceObjectives: To establish recommendations on immunization for patients with multiple sclerosis (MS).Background: Vaccines have been suspected in the past to trigger MS and relapses. With the extension of the immunoactive treatment arsenal, other concerns have been raised more recently about an increased risk of infection or a decreased effectiveness of immunization in immunosuppressed patients.Methods: The French Group for Recommendations into Multiple Sclerosis (France4MS) performed a systematic search of papers in Medline and other university databases (January 1975-June 2018). The RAND/UCLA appropriateness method was chosen to review the scientific literature and to formalize the degree of agreement among experts on 5 clinical questions related to immunization and MS. Readers from the steering committee conducted a systematic analysis, wrote a critical synthesis and prepared a list of proposals that were evaluated by a rating group of 28 MS experts. The final version of the recommendations was finally reviewed by a reading group of 110 health care professionals and classified as appropriate, inappropriate or uncertain.Results: Neurologists should verify the vaccination status as soon as MS is diagnosed and before disease-modifying treatments (DMTs) are introduced. The French vaccination schedule applies to MS patients and seasonal influenza vaccination is recommended. In the case of treatment-induced immunosuppression, MS patients should be informed about the risk of infection and the vaccination standards of the French High Council of Health should be applied. Live attenuated vaccines are contra-indicated in patients recently treated with immunosuppressive drugs, including corticosteroids; other vaccines can be proposed whatever the treatment, but their effectiveness may be partly reduced with some drugs.Conclusion: Physicians and patients should be aware of the updated recommendations for immunizations of patients with MS

    Delay from treatment start to full effect of immunotherapies for multiple sclerosis

    No full text
    International audienceIn multiple sclerosis, treatment start or switch is prompted by evidence of disease activity. Whilst immunomodulatory therapies reduce disease activity, the time required to attain maximal effect is unclear. In this study we aimed to develop a method that allows identification of the time to manifest fully and clinically the effect of multiple sclerosis treatments (‘therapeutic lag’) on clinical disease activity represented by relapses and progression-of-disability events. Data from two multiple sclerosis registries, MSBase (multinational) and OFSEP (French), were used. Patients diagnosed with multiple sclerosis, minimum 1-year exposure to treatment, minimum 3-year pretreatment follow-up and yearly review were included in the analysis. For analysis of disability progression, all events in the subsequent 5-year period were included. Density curves, representing incidence of relapses and 6-month confirmed progression events, were separately constructed for each sufficiently represented therapy. Monte Carlo simulations were performed to identify the first local minimum of the first derivative after treatment start; this point represented the point of stabilization of treatment effect, after the maximum treatment effect was observed. The method was developed in a discovery cohort (MSBase), and externally validated in a separate, non-overlapping cohort (OFSEP). A merged MSBase-OFSEP cohort was used for all subsequent analyses. Annualized relapse rates were compared in the time before treatment start and after the stabilization of treatment effect following commencement of each therapy. We identified 11 180 eligible treatment epochs for analysis of relapses and 4088 treatment epochs for disability progression. External validation was performed in four therapies, with no significant difference in the bootstrapped mean differences in therapeutic lag duration between registries. The duration of therapeutic lag for relapses was calculated for 10 therapies and ranged between 12 and 30 weeks. The duration of therapeutic lag for disability progression was calculated for seven therapies and ranged between 30 and 70 weeks. Significant differences in the pre- versus post-treatment annualized relapse rate were present for all therapies apart from intramuscular interferon beta-1a. In conclusion we have developed, and externally validated, a method to objectively quantify the duration of therapeutic lag on relapses and disability progression in different therapies in patients more than 3 years from multiple sclerosis onset. Objectively defined periods of expected therapeutic lag allows insights into the evaluation of treatment response in randomized clinical trials and may guide clinical decision-making in patients who experience early on-treatment disease activity. This method will subsequently be applied in studies that evaluate the effect of patient and disease characteristics on therapeutic lag
    corecore