10 research outputs found

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    A common soil temperature threshold for the upper limit of alpine grasslands in European mountains

    Get PDF
    While climatic research about treeline has a long history, the climatic conditions corresponding to the upper limit of closed alpine grasslands remain poorly understood. Here, we propose a climatic definition for this limit, the ‘grassline’, in analogy to the treeline, which is based on the growing season length and the soil temperature. Eighty-seven mountain summits across ten European mountain ranges, covering three biomes (boreal, temperate, Mediterranean), were inventoried as part of the GLORIA project. Vascular plant cover was estimated visually in 326 plots of 1 x 1 m. Soil temperatures were measured in-situ for 2–7 years, from which the length of the growing season and mean temperature were derived. The climatic conditions corresponding to 40 % plant cover were defined as the thresholds for alpine grassland. Closed vegetation was present in locations with a mean growing season soil temperature warmer than 4.9 °C, or a minimal growing season length of 85 days, with the growing season defined as encompassing days with daily mean ≥ 1 °C. Hence, the upper limit of closed grasslands was associated with a mean soil temperature close to that previously observed at the treeline, and in accordance with physiological thresholds to growth in vascular plants. In contrast to trees, whose canopy temperature is coupled with air temperature, small-stature alpine plants benefit from the soil warmed by solar radiation and consequently, they can grow at higher elevations. Since substrate stability is necessary for grasslands to occur at their climatic limit, the grassline rarely appears as a distinct linear feature

    How do women living with HIV experience menopause? Menopausal symptoms, anxiety and depression according to reproductive age in a multicenter cohort

    Get PDF
    CatedresBackground: To estimate the prevalence and severity of menopausal symptoms and anxiety/depression and to assess the differences according to menopausal status among women living with HIV aged 45-60 years from the cohort of Spanish HIV/AIDS Research Network (CoRIS). Methods: Women were interviewed by phone between September 2017 and December 2018 to determine whether they had experienced menopausal symptoms and anxiety/depression. The Menopause Rating Scale was used to evaluate the prevalence and severity of symptoms related to menopause in three subscales: somatic, psychologic and urogenital; and the 4-item Patient Health Questionnaire was used for anxiety/depression. Logistic regression models were used to estimate odds ratios (ORs) of association between menopausal status, and other potential risk factors, the presence and severity of somatic, psychological and urogenital symptoms and of anxiety/depression. Results: Of 251 women included, 137 (54.6%) were post-, 70 (27.9%) peri- and 44 (17.5%) pre-menopausal, respectively. Median age of onset menopause was 48 years (IQR 45-50). The proportions of pre-, peri- and post-menopausal women who had experienced any menopausal symptoms were 45.5%, 60.0% and 66.4%, respectively. Both peri- and post-menopause were associated with a higher likelihood of having somatic symptoms (aOR 3.01; 95% CI 1.38-6.55 and 2.63; 1.44-4.81, respectively), while post-menopause increased the likelihood of having psychological (2.16; 1.13-4.14) and urogenital symptoms (2.54; 1.42-4.85). By other hand, post-menopausal women had a statistically significant five-fold increase in the likelihood of presenting severe urogenital symptoms than pre-menopausal women (4.90; 1.74-13.84). No significant differences by menopausal status were found for anxiety/depression. Joint/muscle problems, exhaustion and sleeping disorders were the most commonly reported symptoms among all women. Differences in the prevalences of vaginal dryness (p = 0.002), joint/muscle complaints (p = 0.032), and sweating/flush (p = 0.032) were found among the three groups. Conclusions: Women living with HIV experienced a wide variety of menopausal symptoms, some of them initiated before women had any menstrual irregularity. We found a higher likelihood of somatic symptoms in peri- and post-menopausal women, while a higher likelihood of psychological and urogenital symptoms was found in post-menopausal women. Most somatic symptoms were of low or moderate severity, probably due to the good clinical and immunological situation of these women

    COVID-19 in hospitalized HIV-positive and HIV-negative patients : A matched study

    Get PDF
    CatedresObjectives: We compared the characteristics and clinical outcomes of hospitalized individuals with COVID-19 with [people with HIV (PWH)] and without (non-PWH) HIV co-infection in Spain during the first wave of the pandemic. Methods: This was a retrospective matched cohort study. People with HIV were identified by reviewing clinical records and laboratory registries of 10 922 patients in active-follow-up within the Spanish HIV Research Network (CoRIS) up to 30 June 2020. Each hospitalized PWH was matched with five non-PWH of the same age and sex randomly selected from COVID-19@Spain, a multicentre cohort of 4035 patients hospitalized with confirmed COVID-19. The main outcome was all-cause in-hospital mortality. Results: Forty-five PWH with PCR-confirmed COVID-19 were identified in CoRIS, 21 of whom were hospitalized. A total of 105 age/sex-matched controls were selected from the COVID-19@Spain cohort. The median age in both groups was 53 (Q1-Q3, 46-56) years, and 90.5% were men. In PWH, 19.1% were injecting drug users, 95.2% were on antiretroviral therapy, 94.4% had HIV-RNA < 50 copies/mL, and the median (Q1-Q3) CD4 count was 595 (349-798) cells/μL. No statistically significant differences were found between PWH and non-PWH in number of comorbidities, presenting signs and symptoms, laboratory parameters, radiology findings and severity scores on admission. Corticosteroids were administered to 33.3% and 27.4% of PWH and non-PWH, respectively (P = 0.580). Deaths during admission were documented in two (9.5%) PWH and 12 (11.4%) non-PWH (P = 0.800). Conclusions: Our findings suggest that well-controlled HIV infection does not modify the clinical presentation or worsen clinical outcomes of COVID-19 hospitalization

    QuantiFERON-TB Gold In-Tube as a Confirmatory Test for Tuberculin Skin Test in Tuberculosis Contact Tracing: A Noninferiority Clinical Trial

    No full text

    Benchmarking plant diversity of Palaearctic grasslands and other open habitats

    No full text
    Aims Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location Palaearctic biogeographic realm. Methods We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology

    Benchmarking plant diversity of Palaearctic grasslands and other open habitats

    No full text
    Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m(2) and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file "GrassPlot Diversity Benchmarks" and the web tool "GrassPlot Diversity Explorer" are now available online () and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology

    Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain

    No full text
    corecore