21 research outputs found

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Philanthropic Pharmacy: Helping Patients in Need

    No full text
    If asked, what would a pharmacist’s justification be for entering the profession? For many, that answer would be, “I wanted a career where I could help people.” Pharmacy is an excellent way to meet that goal, but it is frustrating at times. One such situation is when patients cannot afford their prescriptions. Even the most altruistic pharmacist cannot stay in business if drugs are given out for free. As a result, patients with no means to pay may leave the pharmacy without their medications, opting to forgo care. Of course, that has the potential to endanger their health if these patients have such conditions as glaucoma, infectious diseases, diabetes, or hypertension. Fortunately, there are existing options for medically underserved patients. Patients may contact the manufacturer for benevolent care programs, but they may also be able to obtain free medications from institutions known as free clinics. - See more at: http://www.uspharmacist.com/content/d/consult%20your%20pharmacist/c/51070/#sthash.7S7Gcigw.dpu

    Mechanisms and Consequences of Small Supernumerary Marker Chromosomes: From Barbara McClintock to Modern Genetic-Counseling Issues

    Get PDF
    Supernumerary marker chromosomes (SMCs) are common, but their molecular content and mechanism of origin are often not precisely characterized. We analyzed all centromere regions to identify the junction between the unique chromosome arm and the pericentromeric repeats. A molecular-ruler clone panel for each chromosome arm was developed and used for the design of a custom oligonucleotide array. Of 27 nonsatellited SMCs analyzed by array comparative genomic hybridization (aCGH) and/or fluorescence in situ hybridization (FISH), seven (approximately 26%) were shown to be unique sequence negative. Of the 20 unique-sequence-positive SMCs, the average unique DNA content was approximately 6.5 Mb (range 0.3–22.2 Mb) and 33 known genes (range 0–149). Of the 14 informative nonacrocentric SMCs, five (approximately 36%) contained unique DNA from both the p and q arms, whereas nine (approximately 64%) contained unique DNA from only one arm. The latter cases are consistent with ring-chromosome formation by centromere misdivision, as first described by McClintock in maize. In one case, a r(4) containing approximately 4.4 Mb of unique DNA from 4p was also present in the proband's mother. However, FISH revealed a cryptic deletion in one chromosome 4 and reduced alpha satellite in the del(4) and r(4), indicating that the mother was a balanced ring and deletion carrier. Our data, and recent reports in the literature, suggest that this “McClintock mechanism” of small-ring formation might be the predominant mechanism of origin. Comprehensive analysis of SMCs by aCGH and FISH can distinguish unique-negative from unique-positive cases, determine the precise gene content, and provide information on mechanism of origin, inheritance, and recurrence risk
    corecore