22 research outputs found

    Seagrass and submerged aquatic vegetation (VAS) habitats off the Coast of Brazil: state of knowledge, conservation and main threats

    Get PDF
    Seagrass meadows are among the most threatened ecosystems on earth, raising concerns about the equilibrium of coastal ecosystems and the sustainability of local fisheries. The present review evaluated the current status of the research on seagrasses and submerged aquatic vegetation (SAV) habitats off the coast of Brazil in terms of plant responses to environmental conditions, changes in distribution and abundance, and the possible role of climate change and variability. Despite an increase in the number of studies, the communication of the results is still relatively limited and is mainly addressed to a national or regional public; thus, South American seagrasses are rarely included or cited in global reviews and models. The scarcity of large-scale and long-term studies allowing the detection of changes in the structure, abundance and composition of seagrass habitats and associated species still hinders the investigation of such communities with respect to the potential effects of climate change. Seagrass meadows and SAV occur all along the Brazilian coast, with species distribution and abundance being strongly influenced by regional oceanography, coastal water masses, river runoff and coastal geomorphology. Based on these geomorphological, hydrological and ecological features, we characterised the distribution of seagrass habitats and abundances within the major coastal compartments. The current conservation status of Brazilian seagrasses and SAV is critical. The unsustainable exploitation and occupation of coastal areas and the multifold anthropogenic footprints left during the last 100 years led to the loss and degradation of shoreline habitats potentially suitable for seagrass occupation. Knowledge of the prevailing patterns and processes governing seagrass structure and functioning along the Brazilian coast is necessary for the global discussion on climate change. Our review is a first and much-needed step toward a more integrated and inclusive approach to understanding the diversity of coastal plant formations along the Southwestern Atlantic coast as well as a regional alert the projected or predicted effects of global changes on the goods and services provided by regional seagrasses and SAV

    Causas antrĂłpicas.

    Get PDF
    Alguns dos principais fatores antrópicos identificados que desencadearam a devastação das florestas nativas foram a caça, exploração agropecuåria, queimadas, extração vegetal, lazer, urbanização e a implantação de infraestrutura de transportes, energia e saneamento. em quase todos eles foram identificados vínculos com atividades e políticas econômicas ou então, se constituem como estratÊgias de sobrevivência frente às adversidades destas. Esses levantamentos permitiram perceber que os diferentes estågios de fragmentação são decorrentes dos diferentes padrþes de desenvolvimento social e econômico, nacional, regional e locais

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Search for narrow resonances and quantum black holes in inclusive and b-tagged dijet mass spectra from pp collisions at √s=7 TeV

    Get PDF
    This is the pre-print version of the Article. The official published version of the Article can be accessed from the links below - Copyright @ 2013 Springer-Verlag.A search for narrow resonances and quantum black holes is performed in inclusive and b-tagged dijet mass spectra measured with the CMS detector at the LHC. The data set corresponds to 5 fb−1 of integrated luminosity collected in pp collisions at √s=7 TeV. No narrow resonances or quantum black holes are observed. Model-independent upper limits at the 95% confidence level are obtained on the product of the cross section, branching fraction into dijets, and acceptance for three scenarios: decay into quark-quark, quark-gluon, and gluon-gluon pairs. Specific lower limits are set on the mass of string resonances (4.31 TeV), excited quarks (3.32 TeV), axigluons and colorons (3.36 TeV), scalar color-octet resonances (2.07 TeV), E6 diquarks (3.75 TeV), and on the masses of W′ (1.92 TeV) and Z′ (1.47 TeV) bosons. The limits on the minimum mass of quantum black holes range from 4 to 5.3 TeV. In addition, b-quark tagging is applied to the two leading jets and upper limits are set on the production of narrow dijet resonances in a model-independent fashion as a function of the branching fraction to b-jet pairs.This study is supported by the BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBr (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore