115 research outputs found

    Genetic heterogeneity of porcine enteric caliciviruses identified from diarrhoeic piglets

    Get PDF
    Enteric caliciviruses (noroviruses and sapoviruses) are responsible for the majority of non-bacterial gastroenteritis in humans of all age groups. Analysis of the polymerase and capsid genes has provided evidence for a huge genetic diversity, but the understanding of their ecology is limited. In this study, we investigated the presence of porcine enteric caliciviruses in the faeces of piglets with diarrhoea. A total of 209 samples from 118 herds were analyszd and calicivirus RNA was detected by RT-PCR in 68 sample (32.5%) and in 46 herds (38.9%), alone or in mixed infection with group A and C rotaviruses. Sequence and phylogenetic analysis of the calicivirus-positive samples characterized the majority as genogroup III (GGIII) sapoviruses. Unclassified caliciviruses, distantly related to the representatives of the other sapovirus genogroups, were identified in five herds, while one outbreak was associated with a porcine sapovirus related genetically to human GGII and GGIV sapovirus strains. By converse, norovirus strains were not detected. Altogether, these data suggest the epidemiological relevance of porcine enteric caliciviruses and suggest a role in the etiology of piglets diarrhoe

    De Novo Transcriptome Sequencing in Anopheles funestus Using Illumina RNA-Seq Technology

    Get PDF
    BACKGROUND: Anopheles funestus is one of the primary vectors of human malaria, which causes a million deaths each year in sub-Saharan Africa. Few scientific resources are available to facilitate studies of this mosquito species and relatively little is known about its basic biology and evolution, making development and implementation of novel disease control efforts more difficult. The An. funestus genome has not been sequenced, so in order to facilitate genome-scale experimental biology, we have sequenced the adult female transcriptome of An. funestus from a newly founded colony in Burkina Faso, West Africa, using the Illumina GAIIx next generation sequencing platform. METHODOLOGY/PRINCIPAL FINDINGS: We assembled short Illumina reads de novo using a novel approach involving iterative de novo assemblies and "target-based" contig clustering. We then selected a conservative set of 15,527 contigs through comparisons to four Dipteran transcriptomes as well as multiple functional and conserved protein domain databases. Comparison to the Anopheles gambiae immune system identified 339 contigs as putative immune genes, thus identifying a large portion of the immune system that can form the basis for subsequent studies of this important malaria vector. We identified 5,434 1:1 orthologues between An. funestus and An. gambiae and found that among these 1:1 orthologues, the protein sequence of those with putative immune function were significantly more diverged than the transcriptome as a whole. Short read alignments to the contig set revealed almost 367,000 genetic polymorphisms segregating in the An. funestus colony and demonstrated the utility of the assembled transcriptome for use in RNA-seq based measurements of gene expression. CONCLUSIONS/SIGNIFICANCE: We developed a pipeline that makes de novo transcriptome sequencing possible in virtually any organism at a very reasonable cost ($6,300 in sequencing costs in our case). We anticipate that our approach could be used to develop genomic resources in a diversity of systems for which full genome sequence is currently unavailable. Our An. funestus contig set and analytical results provide a valuable resource for future studies in this non-model, but epidemiologically critical, vector insect

    Happiness around the world: A combined etic-emic approach across 63 countries.

    Get PDF
    What does it mean to be happy? The vast majority of cross-cultural studies on happiness have employed a Western-origin, or "WEIRD" measure of happiness that conceptualizes it as a self-centered (or "independent"), high-arousal emotion. However, research from Eastern cultures, particularly Japan, conceptualizes happiness as including an interpersonal aspect emphasizing harmony and connectedness to others. Following a combined emic-etic approach (Cheung, van de Vijver & Leong, 2011), we assessed the cross-cultural applicability of a measure of independent happiness developed in the US (Subjective Happiness Scale; Lyubomirsky & Lepper, 1999) and a measure of interdependent happiness developed in Japan (Interdependent Happiness Scale; Hitokoto & Uchida, 2015), with data from 63 countries representing 7 sociocultural regions. Results indicate that the schema of independent happiness was more coherent in more WEIRD countries. In contrast, the coherence of interdependent happiness was unrelated to a country's "WEIRD-ness." Reliabilities of both happiness measures were lowest in African and Middle Eastern countries, suggesting these two conceptualizations of happiness may not be globally comprehensive. Overall, while the two measures had many similar correlates and properties, the self-focused concept of independent happiness is "WEIRD-er" than interdependent happiness, suggesting cross-cultural researchers should attend to both conceptualizations

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
    • 

    corecore