314 research outputs found

    A programme evaluation of \u27First Steps\u27: A peer-conceived, developed and led self-management intervention for people after a Parkinson\u27s diagnosis

    Get PDF
    \ua9 The Author(s) 2023. Objective: A diagnosis of Parkinson\u27s often leads to uncertainty about the future and loss of perceived control. Peer support may offer a means to address these concerns and promote self-management. Design: A programme evaluation of the feasibility and potential effects of ‘First Steps’, utilising a pragmatic step wedge approach. Comparing First Steps (intervention) to (control) conditions. Setting: In the community at four sites in southern England. Participants: Newly diagnosed (≤ 12months) people with Parkinson\u27s. Intervention: First Steps was a 2-day peer-conceived, developed and led intervention to support self-management. Main measures: At 0, 12 and 24 weeks anxiety and depression (Hospital, Anxiety and Depression Scale, HADS), daily functioning (World Health Organisation Disability Assessment Schedule, WHODAS), physical activity, quality of life (EQ5D), carer strain and service utilisation were assessed. Results: Between February 2018 and July 2019, 36 participants were enrolled into intervention and 21 to control conditions, all were included in statistical analysis. Lost to follow up was n = 1 (intervention) and n = 1 adverse event was reported (control, unrelated). Of the 36 allocated to the intervention n = 22 participants completed both days of First Steps during the study period. Completion of outcome measures was >95% at 24 weeks. Small effects favouring the intervention were found for HADS (odds ratio (OR) = 2.06, 95% confidence interval (CI) 0.24:17.84), Carer Strain Index (OR = 2.22, 95% CI 0.5:9.76) and vigorous (d = 0.42, 95% CI −0.12:0.97) and total physical activity (d = 0.41, 95% CI −0.13:0.95). EQ5D, WHOSDAS and service utilisation, was similar between groups. Conclusions: First Steps was feasible and safe and we found potential to benefit physical activity, mental health and carer strain. Further research with longer-term follow up is warranted

    A programme evaluation of ‘First Steps’: A peer-conceived, developed and led self-management intervention for people after a Parkinson's diagnosis

    Get PDF
    ObjectiveA diagnosis of Parkinson's often leads to uncertainty about the future and loss of perceived control. Peer support may offer a means to address these concerns and promote self-management. DesignA programme evaluation of the feasibility and potential effects of ‘First Steps’, utilising a pragmatic step wedge approach. Comparing First Steps (intervention) to (control) conditions. Setting: In the community at four sites in southern England. Participants: Newly diagnosed (≤ 12months) people with Parkinson's. Intervention: First Steps was a 2-day peer-conceived, developed and led intervention to support self-management. Main measures: At 0, 12 and 24 weeks anxiety and depression (Hospital, Anxiety and Depression Scale, HADS), daily functioning (World Health Organisation Disability Assessment Schedule, WHODAS), physical activity, quality of life (EQ5D), carer strain and service utilisation were assessed. ResultsBetween February 2018 and July 2019, 36 participants were enrolled into intervention and 21 to control conditions, all were included in statistical analysis. Lost to follow up was n = 1 (intervention) and n = 1 adverse event was reported (control, unrelated). Of the 36 allocated to the intervention n = 22 participants completed both days of First Steps during the study period. Completion of outcome measures was >95% at 24 weeks. Small effects favouring the intervention were found for HADS (odds ratio (OR) = 2.06, 95% confidence interval (CI) 0.24:17.84), Carer Strain Index (OR = 2.22, 95% CI 0.5:9.76) and vigorous (d = 0.42, 95% CI −0.12:0.97) and total physical activity (d = 0.41, 95% CI −0.13:0.95). EQ5D, WHOSDAS and service utilisation, was similar between groups. ConclusionsFirst Steps was feasible and safe and we found potential to benefit physical activity, mental health and carer strain. Further research with longer-term follow up is warranted

    Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer

    Get PDF
    Introduction Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach. Methods Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39). Results Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1). Conclusions These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response

    Effects of a physical education intervention on cognitive function in young children: randomized controlled pilot study

    Get PDF
    Randomized controlled trials (RCT) are required to test relationships between physical activity and cognition in children, but these must be informed by exploratory studies. This study aimed to inform future RCT by: conducting practical utility and reliability studies to identify appropriate cognitive outcome measures; piloting an RCT of a 10 week physical education (PE) intervention which involved 2hours per week of aerobically intense PE compared to 2 hours of standard PE (control). 64 healthy children (mean age 6.2 yrs SD 0.3; 33 boys) recruited from 6 primary schools. Outcome measures were the Cambridge Neuropsychological Test Battery (CANTAB), the Attention Network Test (ANT), the Cognitive Assessment System (CAS) and the short form of the Connor’s Parent Rating Scale (CPRS:S). Physical activity was measured habitually and during PE sessions using the Actigraph accelerometer. Test- retest intraclass correlations from CANTAB Spatial Span (r 0.51) and Spatial Working Memory Errors (0.59) and ANT Reaction Time (0.37) and ANT Accuracy (0.60) were significant, but low. Physical activity was significantly higher during intervention vs. control PE sessions (p <0.0001). There were no significant differences between intervention and control group changes in CAS scores. Differences between intervention and control groups favoring the intervention were observed for CANTAB Spatial Span, CANTAB Spatial Working Memory Errors, and ANT Accuracy. The present study has identified practical and age-appropriate cognitive and behavioral outcome measures for future RCT, and identified that schools are willing to increase PE time

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore