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Abstract

Developmental delay and/or intellectual disability (DD/ID) affects 1–3% of all children. At least half of these are thought to
have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is
particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using
massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients
with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted
sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina
HiSeq2000 using paired-end reads. For all eight patients, 81–84% of the targeted regions achieved read depths of at least
206, with average read depths overlapping targets ranging from 3226 to 7986. Causative variants were successfully
identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the
L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical
phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes.
However, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism.

Citation: Brett M, McPherson J, Zang ZJ, Lai A, Tan E-S, et al. (2014) Massively Parallel Sequencing of Patients with Intellectual Disability, Congenital Anomalies
and/or Autism Spectrum Disorders with a Targeted Gene Panel. PLoS ONE 9(4): e93409. doi:10.1371/journal.pone.0093409

Editor: Hao Sun, The Chinese University of Hong Kong, Hong Kong

Received September 26, 2013; Accepted March 4, 2014; Published April 1, 2014

Copyright: � 2014 Brett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study is funded by Grant number BMRC 06/1/50/19/485 from the Agency for Science and Technology and Research; and NMRC/PPG/KKH12010-
Theme3 from the National Medical Research Council, Ministry of Health, Republic of Singapore. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tanec@bigfoot.com

Introduction

Developmental delay and/or intellectual disability (DD/ID)

affects 1–3% of all children and at least half of these are thought to

have a genetic etiology. The genetic causes include microscopically

visible chromosomal imbalances, copy number variants as well as

point mutations. However, the genetic etiology remains unknown

for at least 50% of all cases of DD/ID [1]. Diagnosis of DD/ID is

challenging due to the broad spectrum of phenotypic presenta-

tions, as patients with DD/ID often have congenital anomalies

and/or autism spectrum disorders. With the advent of massively

parallel sequencing (MPS) or next generation sequencing (NGS),

there has been expectation of an increased detection of the genetic

causes of DD/ID. In particular, exome sequencing has been

identified as an effective tool for discovery of new disease genes.

However, many technical challenges remain including the uneven

depth of coverage across the exome, gaps in coverage and

mapping problems. In addition, there is the challenge of

interpreting the clinical significance of the thousands of variants

generated by exome sequencing.

An alternative approach is to perform MPS with a targeted gene

panel. Studies using panels of targeted genes have been reported

for various disease entities like cardiomyopathies [2], hearing loss

[3], epilepsy [4] and retinal disorders [5]. These studies have

shown that targeted MPS is particularly suited for clinical

diagnostic testing for genetically heterogeneous conditions where

there are a large number of known candidate genes.

We describe our experiences with using massively parallel

sequencing of a targeted gene panel of 355 genes for investigating

the genetic etiology of eight patients with a range of phenotypes

including DD/ID, congenital anomalies and autism spectrum

disorder.

Materials and Methods

Ethics Statement
This study is approved by the Institutional Review Board of KK

Women’s and Children’s Hospital and SingHealth Centralised

Institutional Review Board A. The patients were recruited with

written informed parental consent by the Genetics Service, KK

Women’s & Children’s Hospital, Singapore.

Patient phenotypes
Eight patients with phenotypes ranging from developmental

delay, multiple congenital anomalies and/or autism spectrum

disorders were selected for the targeted sequencing (Table 1). Prior
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genetic tests were normal and array comparative genomic

hybridization did not detect any copy number changes associated

with known microdeletion and microduplication syndromes.

DNA extraction
Genomic DNA was isolated from peripheral blood using the

Gentra Puregene blood kit (Qiagen Inc.,USA) according to the

manufacturer’s instructions.

Targeted gene panel and MPS
A total of 355 genes were targeted for capture and deep

sequencing. They include candidate genes associated with DD/

ID, microdeletion/microduplication syndromes, congenital anom-

alies, and autism spectrum disorders (Table S1). Using the eArray

system (Agilent Technologies Inc. USA), the capture was designed

to include exons with at least 30 bp of the flanking intronic

sequence. In addition, 5 kb of the flanking sequence in the 59UTR

and 39UTR regions were added to the targeted regions. A total of

4150 regions from the 355 genes were targeted for a final capture

size of 4.79 Mb.

Targeted sequence enrichment was performed using the Agilent

SureSelect Target Enrichment Kit (Agilent Technologies Inc.

USA). Genomic DNA was sheared using a Covaris S1 Ultra-

sonicator (Covaris, MA). Adaptor-ligated libraries were construct-

ed using Paired-End Genomic DNA kits (Illumina, CA). The

multiplexed samples were sequenced on the Illumina Hiseq

platform using 76-bp paired-end reads.

Variant analysis and prioritization
Sequencing data were aligned to hg19 using the Burrows-

Wheeler Aligner (BWA) software. PCR duplicates were removed

with the ‘samtools’ software, and variants called using the Genome

Analysis Toolkit (GATK, version 1.0) software from the Broad

Institute.

Variants were annotated based on CCDS, Refseq and Ensembl

gene transcripts. Identified variants that are listed in the NCBI

dbSNP (version 132) were filtered out, along with variants that had

poor depth or low average base quality scores. Prioritization of

variants was carried out by the following criteria: selection of

candidate genes based on patient’s phenotype, severity of the

predicted impact on gene function, conservation of amino acid

affected, and frequency of the variant in the literature and

databases including the Human Gene Mutation Database

(HGMD http://www.biobase-international.com/), Leiden Open

Variation Databases (LOVD http://www.lovd.nl/3.0/home),

Exome Variant Server (EVS, http://evs.gs.washington.edu/

EVS/) and 1000 genomes database (http://browser.http://

browser.1000genomes.org/index.html). PolyPhen-2 (http://

genetics.bwh.harvard.edu/pph2/) and SIFT (http://sift.bii.a-star.

edu.sg/) were used to predict the pathogenicity of non-synony-

mous variants. The candidate variants were confirmed by Sanger

sequencing and familial segregation testing was performed

whenever possible. The workflow is summarized in Figure 1.

Genotype data has been deposited at the European Genome-

phenome Archive (EGA, http://www.ebi.ac.uk/ega/), which is

hosted by the EBI, under accession number EGAS00001000683.

Sanger Dideoxy Terminator Sequencing
Selected variants were confirmed by Sanger dideoxy terminator

sequencing. Primers were designed with Primer3 software. PCR

was carried out with HotStarTaq PCR kit (Qiagen Inc.,USA) and

GC-Rich PCR kit (Roche Diagnostics GmbH, Mannheim,

Germany) was used for GC rich regions. Sequencing products

were resolved on an ABI3730 capillary sequencing instrument

(Applied Biosystems) and chromatograms were analysed with

Mutation Surveyor version 3.3 (SoftGenetics, LLC, State College,

PA, USA).

RNA extraction and cDNA sequencing
RNA was extracted from freshly collected whole blood using the

NucleoSpin RNA blood kit (Machery-Nagel GmbH, Germany)

and cDNA was synthesized using the Qiagen OneStep RT-PCR

kit (Qiagen Inc., USA). PCR primers were designed within exons

and PCR was performed using cDNA as template. PCR products

were visualised on gels and sequenced as described above.

Table 1. Phenotypes and genetic testing of the eight patients.

Patient Age Gender Phenotypes Previous genetic testing

Patient 1 11 Male DD/ID, hydrocephalus, adducted thumbs, agenesis of corpus callosum, spasticity, optic atrophy,
CTEV, no speech

Karyotype, aCGH

Patient 2 4 Male DD, microcephaly, dysmorphism (hypertelorism, low set ears, posteriorly rotated, microstomia with
tented upper lip, high forehead with cowlick), hypotonia, short fingers, bilateral CTEV, bifid scrotum,
undescended testes, speech delay, family history of neurodevelopmental disorders and early deaths

aCGH

Patient 3 4 Female Dandy-Walker malformation, bilateral post-axial polydactyly, ventricular septal defect; anal stenosis,
hearing loss, omphalocoele minor, hypoplastic nipple, sacral dimple, low set ears, deep set eyes,
significant tendency to keloid formation

Karyotype, fluorescent in-situ
hybridization for 6p deletion,
aCGH

Patient 4 11 Female DD, autism spectrum disorder diagnosed at age 3K. Karyotype, Angelman
Syndrome, aCGH

Patient 5 5 Male DD, no speech, no eye contact Karyotype, FragX, aCGH

Patient 6 5 Male Speech delay, autism spectrum disorder, sister with DD and Turner’s syndrome Karyotype, FragX, aCGH

Patient 7 11 Male Normal IQ, mild autism, does not interact with peers, hyperactive Karyotype, aCGH

Patient 8 7 Female DD, intellectual disability? autism spectrum disorder, speech delay, moderate IQ, hypertelorism,
depressed nasal bridge, prominent jaw, brother with ADHD

Karyotype, FragX, aCGH,

DD = developmental delay; ID = intellectual disability; CTEV = congenital talipes equinovarus; ADHD = attention deficit hyperactivity disorder; aCGH = array
comparative genomic hybridization; FragX = Fragile X
doi:10.1371/journal.pone.0093409.t001
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Results

Data output and quality
For all eight patients, 81–84% of the targeted regions achieved

read depths of at least 206, with average read depths overlapping

targets ranging from 3226 to 7986 (Table 2). There were a few

genes with very poor coverage. In particular, coverage of IKBKG,

CFC1 and GTF21 was generally poor. In addition, read depths

were ,106 for a few exons in genes like ARX, SHANK3, MECP2,

SALL1, TBX1, PGA5, NF1, CHRNA7, NIPA1, DMD. These were

usually either in exon 1 or within GC rich regions.

Variant detection and prioritization
After filtering out the common variants present in dbSNP and

variants with MAF .1% in EVS and the 1000 Genome browser,

1505 single nucleotide variants (SNVs) were identified in the eight

patients, with a range of 131 to 236 SNVs per patient. A small

number of variants were selected for validation by Sanger

sequencing based on the prioritization criteria shown in Figure 1.

Patient 1
A total of 172 SNVs were detected in Patient 1 who is male with

a 46,XY karyotype. Of the SNVs affecting exons, the top

candidate mutation was a putative splice site mutation in the

L1CAM gene, c.3458-1G.A, located at chrX: 153129005 (hg19)

which was sequenced at 886 (Figure 2A). This variant was

confirmed by Sanger sequencing (Figure 2B) and parental testing

confirmed that the hemizygous mutation was inherited from his

healthy mother. The variant affects the invariant AG acceptor

splice site of intron 25 and is predicted to affect the splicing of exon

26. cDNA sequencing confirmed that splicing is affected at exon

26 and that the variant results in a deletion of 5 bp

(r.3458_3462delTGAAG) from exon 26,which causes a frame

shift and a premature stop leading to a predicted truncated protein

of 1153 amino acids (Figure 2C).

Patient 2
Patient 2 is male with a 46,XY karyotype. Among the 129 SNVs

detected in this patient, the top candidate was a c.7156C.T

Figure 1. Variant analysis and prioritization workflow. Summary of our variant evaluation process for identifying candidate mutations
doi:10.1371/journal.pone.0093409.g001
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(p.R2386X) mutation in the ATRX gene, located at chr X:

76776310 (Figure 3A). The mutation was validated by Sanger

sequencing (Figure 3B), and extended family testing showed that

the mutation was present in the unaffected mother and in an

affected brother (Figure 3C), but was absent in the father and

unaffected sister.

Patient 3
A total of 236 SNVs were detected in Patient 3, who is female

with a 46,XX karyotype. The top candidate SNVs included

potential splice site SNVs in USP9X and FGFR2, and non-

synonymous variants in RELN, DMD, MAP7D2 and ZNF41. Indels

in exonic regions of SHROOM4, ZIC2 and MED12 were also

investigated. All the SNVs and indels were confirmed by Sanger

sequencing and parental testing showed that all the variants were

inherited except for the USP9X splice site variant. The de novo

c.1986-1G.T variant in USP9X (chrX: 41025124) is the likely

causative mutation (Figure 4A & 4B). This variant is novel and is

predicted to affect the acceptor splice site of intron 15 of the

USP9X gene. cDNA sequencing with primers in exon 13 and exon

17 showed the normal transcript together with the low-level

presence of an altered transcript. The altered transcript showed a

deletion of 13 bases (r.1986_1998delATTTTTATTGAAG) which

is predicted to result in an altered protein and a premature stop

codon p.F663Mfs*18 (Figure 4C & 4E). A second, independent

pair of primers in exons 13 and 16 also showed the presence of this

low-level altered transcript. Sequencing of the RT-PCR product

from a control RNA only showed the presence of the normal

transcript with no altered transcript seen (Figure 4D)

Patients 4–8
The top candidate variants of patients 4–8 are listed in Table 3.

All these variants have been confirmed by Sanger sequencing and

their inheritance was tested if parental samples were available. In

addition to the variants detected by MPS, previous array CGH

using Affymetrix SNP6 for Patient 5 showed a 134 kb deletion at

9p21.1 extending from 28,609,725–28,743,782 (hg19) involving

the LINGO2 gene (data not shown). This copy number change was

initially thought to have no clinical significance.

Discussion

The average read depths achieved for the targeted regions were

very high (.3226) and read depths of .206 were achieved for

81–84% of the targets. There was some variation in coverage, with

overall poor coverage for just three genes and poor coverage in a

few exons for another 10 genes.

Targeted MPS detected the causative mutations in L1CAM in

Patient 1 and ATRX in Patient 2, which were consistent with their

respective phenotypes. In Patient 1 the c.3458-1G.A mutation in

the L1CAM gene affected the splicing process and cDNA

sequencing confirmed the presence of a truncated transcript.

Mutations in the L1CAM gene are associated with L1 syndrome,

an X-linked recessive disorder. The major features of L1 syndrome

include congenital hydrocephalus, adducted thumbs, spastic

paraplegia, agenesis of the corpus callosum and cognitive

impairment [6]. These features were all present in Patient 1.

The c.3458-1G.A mutation in Patient 1 is novel but a splice site

mutation at the same position (c.3458-1G.C) has been reported

in a male with L1 syndrome [7].

In Patient 2, a p.R2386X mutation in the ATRX gene

segregated with the clinical phenotypes in the family. Mutations

in ATRX cause X-linked alpha thalassaemia mental retardation

(ATR-X syndrome) in males, which is associated with profound
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developmental delay, facial dysmorphism, genital abnormalities

and alpha thalassemia [8]. The features in Patient 2 were largely

consistent with ATR-X syndrome. The p.R2386X mutation

occurs in exon 34 of the ATRX protein. This mutation has been

reported in three separate instances in the literature and all cases

have involved severe mental retardation and genital abnormalities

[9]. Independent testing of this family by conventional ATRX

molecular testing corroborated our MPS result [10].

Patient 3 has multiple congenital anomalies. A de novo

c.1986G.T mutation in the USP9X gene is likely to be causative

for all or some of her clinical phenotypes. We showed the presence

of a truncated cDNA sequence which is predicted to result in a

truncated protein. It is possible that the truncated protein might

have a dominant negative effect or impaired protein function.

USP9X is a member of the USP family of deubiquinating enzymes

(DUBs) which process ubiquitin precursors and ubiquinated

proteins. It has an important regulatory role in protein turnover

and is an essential component of the TGFb/BMP signalling

cascade through its control of SMAD4 monoubiquitination [11].

The drosophila homolog (FAF) is essential for normal eye

development and embryonic viability and the mouse homolog

(FAM) has been shown to play essential roles in embryonic

development [12–14]. There has been one published report of a

truncating mutation in USP9X which segregated with disease in an

X-linked mental retardation family [15]. Identification of more

patients with mutations in the USP9X gene will be needed to

confirm the association with ID and congenital anomalies.

Patients 4, 5, 6, 7, 8 have phenotypes that included autism

spectrum disorders. Autism spectrum disorders are complex

disorders. Despite the compelling argument for a genetic basis

for autism, it is estimated that a specific genetic cause has been

established for only 15% of cases [16]. Recent large exome studies

in trios have implicated a number of genes, but did not identify

any gene as a major cause of autism [17–19]. The exome studies

all showed the extreme heterogeneous nature of autism and also

indicated that many of the genes implicated were interconnected

by shared pathways. The exome trio studies also showed the

importance of de novo point mutations in autism.

Single variants in a number of genes were detected but variants

in AHI1 and MAP7D3 were seen in Patient 5 and Patient 7. AHI1

Figure 2. L1CAM splice site mutation in Patient 1. (A) IGV snapshot of c.3458-1G.A variant in the L1CAM gene (Chr X:153129005, hg19). (B)
Sanger sequencing confirmation of c.3458-1G.A variant (NM_000425.3) (C) Partial cDNA sequence showing the mutant allele with the 5 bp deletion.
doi:10.1371/journal.pone.0093409.g002
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is highly expressed in fetal brain and also in the cerebellum and

cerebral cortex of the adult brain, and mutations in AHI1 cause

Joubert Syndrome [20]. Genetic association has also been

reported between AHI1 and autism [21]. The AHI1 variant

E1086G is a pathogenic mutation in a case of Joubert syndrome

[22]. The E1086G and D1179Y variants have been reported in

the EVS database with a frequency of 0.008% and 0.033%

respectively. MAP7D3 has not been associated with autism

spectrum disorders. There was one report of a truncating variant

in MAP7D3 in an X-linked mental retardation family that did not

segregate with disease. The T335M variant has been reported in

the EVS database with a frequency of 0.019% (2 of 10444 alleles).

Novel variants in CREBBP, TSC1 and FMR1 were detected in

Patient 4. These genes have been associated with syndromic

autism and were probably unlikely to be causative of her

phenotypes as they were inherited from her healthy parents.

Similarly there were interesting candidate variants in Patient 6 in

NIPA1 gene which has been associated with autism. Again these

variants were inherited and thus less likely to be causative of his

autism spectrum disorder.

In Patient 7, variants were found in SYNGAP1 and SEMA5A

which have been linked to autism [23]. This patient also had a

V528M variant in FLNA that has been reported in a case of

bilateral periventricular nodular heterotopia [24] and also as a

functional polymorphism [25]. Novel variants in FOXP1, ATRX,

AUTS2, CSMD1 were detected in Patient 8. All these genes have

been associated with autism and other neurodevelopmental

disorders. However, all these variants are inherited from her

healthy parents and thus their role in her phenotype remains

uncertain. In particular mutations and deletions in FOXP1 have

been shown to cause autism, mental retardation and speech and

language deficits [26,27]. The A100G variant in FOXP1 has been

predicted to be damaging by PolyPhen 2 and SIFT. The novel

V260I variant in AUTS2 is also of interest. This variant is present

only in AUTS2 isoform 3, the shortest isoform comprised of 266

amino acids. The AUTS2 gene was first identified as a candidate

gene for autism when it was shown to be disrupted by a

Figure 3. ATRX p.R2386X mutation in Patient 2. (A) IGV snapshot of c.7156C.T variant in ATRX (Chr X:76776310, hg19). (B) Sanger sequencing
confirmation of c.7156C.T (p.R2386X, NM_00489.3) in Patient 2. (C) Sanger sequencing showing heterozygous c.7156C.T variant in the mother.
doi:10.1371/journal.pone.0093409.g003
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translocation breakpoint in a pair of autistic twins [28]. Mutations

in the AUTS2 gene have also been identified in patients with

mental retardation [29].

Patient 5 also had a 134 kb deletion at 9p21.1 affecting the

59UTR and first two exons of the LINGO2 gene. This deletion was

not present in his mother and the father’s DNA was not available

for testing. Deletions affecting the LINGO2 gene have been

reported in a cohort of Utah autism patients [30]. There is a

possibility that the 9p21.1 deletion could act in conjunction with

other SNVs in Patient 5 to influence his phenotype. Recent

publications have highlighted the potential effects of polygenic

mutational events, variable expressivity, variable penetrance, and

CNV burden on complex disorders like autism [31–34]. All these

factors complicate the diagnosis of the causes of autism spectrum

disorders. The unavailability of some parental samples and the

lack of complete phenotyping of parents in our study also limit the

ability to predict the causality of some of the variants detected.

Despite the progress in genetic testing, 50–60% of the causes of

DD/ID remain unknown. This is unfortunate as a clinical

diagnosis of DD/ID provides crucial information for diagnostics

and helps in understanding the mechanisms of the disease

including the options for management and treatment. In addition,

it puts an end to the testing odyssey and gives families closure and

may also be important for future reproductive decisions.

This pilot study has confirmed the value of targeted MPS for

investigating DD/ID and multiple congenital anomalies in

children for diagnostic purposes. Causative mutations were found

in two of the eight patients tested and a likely causal mutation was

found in another patient. For the other five patients, no

conclusions can be made about the variants as no compelling de

novo variants were found. Thus, targeted gene MPS was less likely

to provide a genetic diagnosis for children whose phenotype

includes autism.

The advantages of targeted gene sequencing as opposed to

whole exome sequencing is the increase in numbers of patients

who could be sequenced and hence an increase in the number of

patients who might receive a diagnosis. With targeted gene

sequencing a greater depth of coverage could be achieved at a

lower cost. The increased depth will facilitate the detection of

indels that might be missed by exome sequencing. Targeted

sequencing also obviates the problem of incidental results. Clinical

interpretation of novel variants remains challenging but should

gradually become easier with the continued development of

variant databases of healthy controls as well as locus-specific

disease databases.

Figure 4. USP9X splice site mutation in Patient 3. (A) IGV snapshot of c.1986-1G.T variant in USP9X (Chr X:41025124, hg19). (B) Sanger
sequencing confirmation of c.1986-1G.T variant (NM_001039590.2) in Patient 3. (C) Partial cDNA sequence showing expression of both the wild type
and low level mutant allele with the 13 bp deletion. (D) Partial cDNA sequence of control patient. (E) Partial genomic DNA sequence of exon 15
(uppercase, blue) and intron 14 (lowercase, red) of USP9X gene showing the c.1986-1G.T variant (arrow) and the 13 bp deletion
(r.1986_1998delATTTTTATTGAAG) which is underlined.
doi:10.1371/journal.pone.0093409.g004
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