603 research outputs found

    Expedited batch processing and analysis of transposon insertions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With advances in sequencing technology, greater and greater amounts of eukaryotic genome data are becoming available. Often, large portions of these genomes consist of transposable elements, frequently accounting for 50% or more in vertebrates. Each transposable element family may have thousands or tens of thousands of individual copies within a given genome, and therefore it can take an exorbitant amount of time and effort to process data in a meaningful fashion.</p> <p>Findings</p> <p>In order to combat this problem, we developed a set of bioinformatics techniques and programs to streamline the analysis. This includes a unique Perl script which automates the process of taking BLAST, Repeatmasker and similar data to extract and manipulate the hit sequences from the genome. This script, called Process_hits uses an object-oriented methodology to compile all hit locations from a given file for processing, organize this data into useable categories, and output it in multiple formats.</p> <p>Conclusions</p> <p>The program proved capable of handling large amounts of transposon data in an efficient fashion. It is equipped with a number of useful sub-functions, each of which is contained within its own sub-module to allow for greater expandability and as a foundation for future program design.</p

    Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach

    Get PDF
    Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies

    Linking microarray reporters with protein functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways.</p> <p>Results</p> <p>This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways.</p> <p>Conclusion</p> <p>Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.</p

    Regular Exercise or Changing Diet Does Not Influence Aortic Valve Disease Progression in LDLR Deficient Mice

    Get PDF
    BACKGROUND: The development and progression of calcific aortic valve disease (CAVD) shares a number of similarities with atherosclerosis. Recently we could demonstrate that regular exercise training (ET) as primary prevention prevents aortic valve disease in LDL-receptor deficient (LDLR(-/-)) mice. We aimed to investigate the impact of exercise training on the progression of CAVD in LDLR(-/-) mice in the setting of secondary prevention METHODS AND RESULTS: Sixty-four LDLR(-/-) mice were fed with high cholesterol diet to induce aortic valve sclerosis. Thereafter the animals were divided into 3 groups: group 1 continuing on high cholesterol diet, group 2 continuing with cholesterol diet plus 1 h ET per day, group 3 continuing with normal mouse chow. After another 16 weeks the animal were sacrificed. Histological analysis of the aortic valve thickness demonstrated no significant difference between the three groups (control 98.3±4.5 ”m, ET 88.2±6.6 ”m, change in diet 87.5±4.0). Immunohistochemical staining for endothelial cells revealed a disrupted endothelial cell layer to the same extend in all groups. Furthermore no difference between the groups was evident with respect to the expression of inflammatory, fibroblastic and osteoblastic markers. CONCLUSION: Based on the present study we have to conclude that once the development of a CAVD is initiated, exercise training or a change in diet does not have the potential to attenuate the progress of the CAVD

    Corporate philanthropy, political influence, and health policy

    Get PDF
    Background The Framework Convention of Tobacco Control (FCTC) provides a basis for nation states to limit the political effects of tobacco industry philanthropy, yet progress in this area is limited. This paper aims to integrate the findings of previous studies on tobacco industry philanthropy with a new analysis of British American Tobacco's (BAT) record of charitable giving to develop a general model of corporate political philanthropy that can be used to facilitate implementation of the FCTC. Method Analysis of previously confidential industry documents, BAT social and stakeholder dialogue reports, and existing tobacco industry document studies on philanthropy. Results The analysis identified six broad ways in which tobacco companies have used philanthropy politically: developing constituencies to build support for policy positions and generate third party advocacy; weakening opposing political constituencies; facilitating access and building relationships with policymakers; creating direct leverage with policymakers by providing financial subsidies to specific projects; enhancing the donor's status as a source of credible information; and shaping the tobacco control agenda by shifting thinking on the importance of regulating the market environment for tobacco and the relative risks of smoking for population health. Contemporary BAT social and stakeholder reports contain numerous examples of charitable donations that are likely to be designed to shape the tobacco control agenda, secure access and build constituencies. Conclusions and Recommendations Tobacco companies' political use of charitable donations underlines the need for tobacco industry philanthropy to be restricted via full implementation of Articles 5.3 and 13 of the FCTC. The model of tobacco industry philanthropy developed in this study can be used by public health advocates to press for implementation of the FCTC and provides a basis for analysing the political effects of charitable giving in other industry sectors which have an impact on public health such as alcohol and food

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore