941 research outputs found
Scale invariance and universality of force networks in static granular matter
Force networks form the skeleton of static granular matter. They are the key
ingredient to mechanical properties, such as stability, elasticity and sound
transmission, which are of utmost importance for civil engineering and
industrial processing. Previous studies have focused on the global structure of
external forces (the boundary condition), and on the probability distribution
of individual contact forces. The disordered spatial structure of the force
network, however, has remained elusive so far. Here we report evidence for
scale invariance of clusters of particles that interact via relatively strong
forces. We analyzed granular packings generated by molecular dynamics
simulations mimicking real granular matter; despite the visual variation, force
networks for various values of the confining pressure and other parameters have
identical scaling exponents and scaling function, and thus determine a
universality class. Remarkably, the flat ensemble of force configurations--a
simple generalization of equilibrium statistical mechanics--belongs to the same
universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur
Recommended from our members
Synchrotron radiography studies of shear-induced dilation in semi-solid Al alloys and steels
An improved understanding of the response of solidifying microstructures to load is required to further minimize casting defects and optimize casting processes. This article overviews synchrotron radiography studies that directly measure the micromechanics of semisolid alloy deformation in a thin sample direct-shear cell. It is shown that shear-induced dilation (also known as Reynolds’ dilatancy) occurs in semisolid alloys with morphologies ranging from equiaxed-dendritic to globular, at solid fractions from the dendrite coherency point to ~90% solid, and it occurs in both Al alloys and carbon steels. Discrete-element method simulations that treat solidifying microstructures as granular materials are then used to explore the origins of dilatancy in semisolid alloys
Foreign Subtitles Help but Native-Language Subtitles Harm Foreign Speech Perception
Understanding foreign speech is difficult, in part because of unusual mappings between sounds and words. It is known that listeners in their native language can use lexical knowledge (about how words ought to sound) to learn how to interpret unusual speech-sounds. We therefore investigated whether subtitles, which provide lexical information, support perceptual learning about foreign speech. Dutch participants, unfamiliar with Scottish and Australian regional accents of English, watched Scottish or Australian English videos with Dutch, English or no subtitles, and then repeated audio fragments of both accents. Repetition of novel fragments was worse after Dutch-subtitle exposure but better after English-subtitle exposure. Native-language subtitles appear to create lexical interference, but foreign-language subtitles assist speech learning by indicating which words (and hence sounds) are being spoken
Reservoir stress path and induced seismic anisotropy: Results from linking coupled fluid-flow/geomechanical simulation with seismic modelling
We present a workflow linking coupled fluid-flow and geomechanical simulation with seismic modelling to predict seismic anisotropy induced by nonhydrostatic stress changes. We generate seismic models from coupled simulations to examine the relationship between reservoir geometry, stress path and seismic anisotropy. The results indicate that geometry influences the evolution of stress, which leads to stress-induced seismic anisotropy. Although stress anisotropy is high for the small reservoir, the effect of stress arching and the ability of the side-burden to support the excess load limit the overall change in effective stress and hence seismic anisotropy. For the extensive reservoir, stress anisotropy and induced seismic anisotropy are high. The extensive and elongate reservoirs experience significant compaction, where the inefficiency of the developed stress arching in the side-burden cannot support the excess load. The elongate reservoir displays significant stress asymmetry, with seismic anisotropy developing predominantly along the long-edge of the reservoir. We show that the link between stress path parameters and seismic anisotropy is complex, where the anisotropic symmetry is controlled not only by model geometry but also the nonlinear rock physics model used. Nevertheless, a workflow has been developed to model seismic anisotropy induced by non-hydrostatic stress changes, allowing field observations of anisotropy to be linked with geomechanical models
Mosaic Convergence of Rodent Dentitions
BACKGROUND:Understanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity. METHODOLOGY/PRINCIPAL FINDINGS:Combined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology. CONCLUSION/SIGNIFICANCE:The reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible pathways. Because convergent pathways imply distinct ontogenetic trajectories, new Evo/Devo comparative studies on cusp morphogenesis are necessary
The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis
<p>Abstract</p> <p>Background</p> <p>The process of malignant transformation, progression and metastasis of melanoma is poorly understood. Gene expression profiling of human cancer has allowed for a unique insight into the genes that are involved in these processes. Thus, we have attempted to utilize this approach through the analysis of a series of primary, non-metastatic cutaneous tumors and metastatic melanoma samples.</p> <p>Methods</p> <p>We have utilized gene microarray analysis and a variety of molecular techniques to compare 40 metastatic melanoma (MM) samples, composed of 22 bulky, macroscopic (replaced) lymph node metastases, 16 subcutaneous and 2 distant metastases (adrenal and brain), to 42 primary cutaneous cancers, comprised of 16 melanoma, 11 squamous cell, 15 basal cell skin cancers. A Human Genome U133 Plus 2.0 array from Affymetrix, Inc. was utilized for each sample. A variety of statistical software, including the Affymetrix MAS 5.0 analysis software, was utilized to compare primary cancers to metastatic melanomas. Separate analyses were performed to directly compare only primary melanoma to metastatic melanoma samples. The expression levels of putative oncogenes and tumor suppressor genes were analyzed by semi- and real-time quantitative RT-PCR (qPCR) and Western blot analysis was performed on select genes.</p> <p>Results</p> <p>We find that primary basal cell carcinomas, squamous cell carcinomas and thin melanomas express dramatically higher levels of many genes, including <it>SPRR1A/B</it>, <it>KRT16/17</it>, <it>CD24</it>, <it>LOR</it>, <it>GATA3</it>, <it>MUC15</it>, and <it>TMPRSS4</it>, than metastatic melanoma. In contrast, the metastatic melanomas express higher levels of genes such as <it>MAGE</it>, <it>GPR19</it>, <it>BCL2A1</it>, <it>MMP14</it>, <it>SOX5</it>, <it>BUB1</it>, <it>RGS20</it>, and more. The transition from non-metastatic expression levels to metastatic expression levels occurs as melanoma tumors thicken. We further evaluated primary melanomas of varying Breslow's tumor thickness to determine that the transition in expression occurs at different thicknesses for different genes suggesting that the "transition zone" represents a critical time for the emergence of the metastatic phenotype. Several putative tumor oncogenes (<it>SPP-1</it>, <it>MITF</it>, <it>CITED-1</it>, <it>GDF-15</it>, <it>c-Met</it>, <it>HOX </it>loci) and suppressor genes (<it>PITX-1</it>, <it>CST-6</it>, <it>PDGFRL</it>, <it>DSC-3</it>, <it>POU2F3</it>, <it>CLCA2</it>, <it>ST7L</it>), were identified and validated by quantitative PCR as changing expression during this transition period. These are strong candidates for genes involved in the progression or suppression of the metastatic phenotype.</p> <p>Conclusion</p> <p>The gene expression profiling of primary, non-metastatic cutaneous tumors and metastatic melanoma has resulted in the identification of several genes that may be centrally involved in the progression and metastatic potential of melanoma. This has very important implications as we continue to develop an improved understanding of the metastatic process, allowing us to identify specific genes for prognostic markers and possibly for targeted therapeutic approaches.</p
Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma
<p>Abstract</p> <p>Background</p> <p>Tumor cell proliferation is a predictor of survival in cutaneous melanoma. The aim of the present study was to evaluate the prognostic impact of mitotic count, Ki-67 expression and novel proliferation markers phosphohistone H3 (PHH3), minichromosome maintenance protein 4 (MCM4) and mitosin, and to compare the results with histopathological variables.</p> <p>Methods</p> <p>202 consecutive cases of nodular cutaneous melanoma were initially included. Mitotic count (mitosis per mm<sup>2</sup>) was assessed on H&E sections, and Ki-67 expression was estimated by immunohistochemistry on standard sections. PHH3, MCM4 and mitosin were examined by staining of tissue microarrays (TMA) sections.</p> <p>Results</p> <p>Increased mitotic count and elevated Ki-67 expression were strongly associated with increased tumor thickness, presence of ulceration and tumor necrosis. Furthermore, high mitotic count and elevated Ki-67 expression were also associated with Clark's level of invasion and presence of vascular invasion. High expression of PHH3 and MCM4 was correlated with high mitotic count, elevated Ki-67 expression and tumor ulceration, and increased PHH3 frequencies were associated with tumor thickness and presence of tumor necrosis. Univariate analyses showed a worse outcome in cases with elevated Ki-67 expression and high mitotic count, whereas PHH3, MCM4 and mitosin were not significant. Tumor cell proliferation by Ki-67 had significant prognostic impact by multivariate analysis.</p> <p>Conclusions</p> <p>Ki-67 was a stronger and more robust prognostic indicator than mitotic count in this series of nodular melanoma. PHH3, MCM4 and mitosin did not predict patient survival.</p
Episodic formation of cometary material in the outburst of a solar-like young star
Our Solar System originated in interstellar gas and dust; the latter is in
the form of amorphous silicate particles and carbonaceous dust. The composition
of cometary material shows that a significant fraction of the amorphous
silicates was transformed into crystalline form during the early evolution of
the protosolar nebula. How and when this transformation happened has been
controversial, with the main options being heating by the young Sun or shock
heating. Here we report mid-infrared features in the outburst spectrum of the
young solar-like star EX Lupi that were not present in quiescence. We attribute
them to crystalline forsterite; the crystals were produced via thermal
annealing in the surface layer of the inner disk by heat from the outburst, a
process that has hitherto not been considered. The observed lack of cold
crystals excludes shock heating at larger radii.Comment: 13 pages of PDF, including Supplementary Informatio
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
- …