69 research outputs found

    Tracheostomy is associated with increased survival in Multiple System Atrophy patients with stridor

    Get PDF
    Stridor treatment in multiple system atrophy (MSA) mainly comprises tracheostomy or continuous positive airway pressure (CPAP), but guidelines for the use of these treatments are lacking. The aim of the study was to evaluate the predictive value of stridor treatment in an MSA cohort

    Blueberry Supply Chain in Italy: Management,Innovation and Sustainability

    Get PDF
    The growing trend market of fresh products is driven by a consumer oriented to new lifestyles and environmental issues. The berries market in Europe represents a good example of a consumer driven supply chain, due to the capacity to answer all the sequences of the system. To explore the process developed by fruit growers’ associated groups in Italy, the research is organized into four stages. The first stage provides a review of the organization of the fresh fruit supply chain (FFSC) and the need to innovate it in light of the driven demand. The second section focuses on the innovation displayed towards storing, managing and maintaining the quality of fruit during the supply. The third section considers the case study. The manuscript concludes by summarising the main results and discussing the implications for future research. The use of a modified active packaging system (MAP) with “green” films has enabled the maintenance of the quality of the fruits for two months, as well as the presence of the company blueberries market for longer periods, and has finally led to improving the exports, thus reaching new European countries, increasing the turnover of the associated group and better remuneration for the fruit growers as a consequence

    Causal evidence that intrinsic beta frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS

    Get PDF
    Correlative evidence provides support for the idea that brain oscillations underpin neural computations. Recent work using rhythmic stimulation techniques in humans provide causal evidence but the interactions of these external signals with intrinsic rhythmicity remain unclear. Here, we show that sensorimotor cortex precisely follows externally applied rhythmic TMS (rTMS) stimulation in the beta-band but that the elicited responses are strongest at the intrinsic individual beta-peak-frequency. While these entrainment effects are of short duration, even subthreshold rTMS pulses propagate through the network and elicit significant cortico-spinal coupling, particularly when stimulated at the individual beta-frequency. Our results show that externally enforced rhythmicity interacts with intrinsic brain rhythms such that the individual peak frequency determines the effect of rTMS. The observed downstream spinal effect at the resonance frequency provides evidence for the causal role of brain rhythms for signal propagation

    RING and ReCal GPS networks: two Italian geodetic infrastructures and their data management, sharing and dissemination

    Get PDF
    Geographic data sharing and collection are becoming key activities among geological and geophysical studies worldwide, and the recent increase of infrastructures is demanding to scientific and civil community an effort to manage and disseminate their products as efficiently as possible. With this effort in mind, INGV began some years ago to collaborate with civilian and commercial subjects in order to promote the integration and sharing of data from GNSS (Global Navigation Satellite System) networks existing in Italy. Since 2004, INGV deployed a permanent, integrated and real-time monitoring CGPS network (RING, Rete Integrata Nazionale GPS, http://ring.gm.ingv.it), which is now constituted by about 170 stations all over Italy (Selvaggi et al., 2006; Avallone et al, 2010). All stations have high quality GPS monuments (D’Ambrosio, 2007; Minichiello et al., 2010) and most of them are co-located with broadband or very broadband seismometers and strong motion sensors. This scientific network is aimed to monitor crustal deformation in Italy in order to study earthquake deformation processes, from interseismic strain accumulation to rupture processes, and is giving an effective contribute to Italian Civil Protection for seismic hazard monitoring. Moreover, in the last years, local Authorities, nation-wide industries and other scientific institutions started to establish GPS/GNSS networks all over the Italian territory mainly for cartographic and positioning purposes. More than 500 CGPS stations are actually operating in Italy. The INGV acquire and analyze most of these networks, promoting at the same time actions to integrate the RING with the ones managed by regional and national data providers (D’Anastasio et al., 2010). The Regione Calabria in 2009 planned and established a network of 17 CGPS stations for cartographic and civil protection purposes covering the Calabria region (hereafter ReCal network). The CGPS stations are good quality monument connected in real time and, in the next future, will start to furnish to the civil community a positioning service. In order to share the RING and ReCal data and relative products, a synergy between the CNT-INGV (Centro Nazionale Terremoti) and the Regione Calabria started in 2011. An official agreement between the two institutions state the sharing of CGPS data, the collaboration between CNT-INGV and Regione Calabria to test the efficiency and the positioning service of ReCal network, and the contribution of ReCal network to scientific monitoring of Calabria, one of the most seismically active region in Italy. Moreover, this agreement included also the commissioning of the ReCal network and of its positioning services performed by CNT-INGV. Figure 1 shows the GPS and GNSS stations currently operating in Italy. In the inset it could be noticed how the RING and ReCal networks are integrated in order to have the best spatial coverage of the Calabrian territory. We will present the first results of the agreement between INGV-CNT and Regione Calabria, and of the commissioning of ReCal network. Moreover, we will focus on the infrastructure already existing and developed by CNT-INGV to manage data acquisition, storage, distribution and access (Cecere, 2007; Cardinale et al., 2010; Falco, 2006; 2008; Memmolo et al., 2010; Pignone et al., 2009). INGV developed dedicated facilities including new softwares for data acquisition and a web-based collaborative environment for management of data and metadata. These facilities are used to manage data coming from the RING as well as from agreements with ReCal and other CGPS networks in Italy. We believe that this infrastructure represents an important reality in the framework of GNSS data sharing development in Italy

    Individual Differences in Alpha Frequency Drive Crossmodal Illusory Perception

    Get PDF
    Perception routinely integrates inputs from different senses. Stimulus temporal proximity critically determines whether or not these inputs are bound together. Despite the temporal window of integration being a widely accepted notion, its neurophysiological substrate remains unclear. Many types of common audio-visual interactions occur within a time window of ∟100 ms [1-5]. For example, in the sound-induced double-flash illusion, when two beeps are presented within ∟100 ms together with one flash, a second illusory flash is often perceived [2]. Due to their intrinsic rhythmic nature, brain oscillations are one candidate mechanism for gating the temporal window of integration. Interestingly, occipital alpha band oscillations cycle on average every ∟100 ms, with peak frequencies ranging between 8 and 14 Hz (i.e., 120-60 ms cycle). Moreover, presenting a brief tone can phase-reset such oscillations in visual cortex [6, 7]. Based on these observations, we hypothesized that the duration of each alpha cycle might provide the temporal unit to bind audio-visual events. Here, we first recorded EEG while participants performed the sound-induced double-flash illusion task [4] and found positive correlation between individual alpha frequency (IAF) peak and the size of the temporal window of the illusion. Participants then performed the same task while receiving occipital transcranial alternating current stimulation (tACS), to modulate oscillatory activity [8] either at their IAF or at off-peak alpha frequencies (IAF¹2 Hz). Compared to IAF tACS, IAF-2 Hz and IAF+2 Hz tACS, respectively, enlarged and shrunk the temporal window of illusion, suggesting that alpha oscillations might represent the temporal unit of visual processing that cyclically gates perception and the neurophysiological substrate promoting audio-visual interactions

    Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens

    Get PDF
    Here, we developed an unbiased, functional target-discovery platform to identify immunogenic proteins from primary non-small cell lung cancer (NSCLC) cells that had been induced to apoptosis by cisplatin (CDDP) treatment in vitro, as compared with their live counterparts. Among the multitude of proteins identified, some of them were represented as fragmented proteins in apoptotic tumor cells, and acted as non-mutated neoantigens (NM-neoAgs). Indeed, only the fragmented proteins elicited effective multi-specific CD4+ and CD8+ T cell responses, upon a chemotherapy protocol including CDDP. Importantly, these responses further increased upon anti-PD-1 therapy, and correlated with patients’ survival and decreased PD-1 expression. Cross-presentation assays showed that NM-neoAgs were unveiled in apoptotic tumor cells as the result of caspase-dependent proteolytic activity of cellular proteins. Our study demonstrates that apoptotic tumor cells generate a repertoire of immunogenic NM-neoAgs that could be potentially used for developing effective T cell-based immunotherapy across multiple cancer patients

    Transcranial alternating current stimulation to the inferior parietal lobe decreases Mu suppression to egocentric, but not allocentric hand movements

    Get PDF
    Egocentric vs. allocentric perspective during observation of hand movements has been related to self-other differentiation such that movements observed from an egocentric viewpoint have been considered as self-related while movements observed from an allocentric viewpoint have been considered as belonging to someone else. Correlational studies have generally found that egocentric perspective induces greater neurophysiological responses and larger behavioural effects compared to an allocentric perspective. However, recent studies question previous findings by reporting greater (Îź) suppression and greater transcranial magnetic stimulation (TMS) induced motor-evoked potentials (MEPs) during observation of allocentric compared to egocentric movements. Furthermore, self-other differentiation has been generally related to activity within the inferior parietal lobe (IPL), but direct evidence for a causal and functional role of IPL in self-other differentiation is lacking. The current study was therefore designed to investigate the influence that IPL exerts on self-other differentiation. To this aim, we measured the impact of individually adjusted alpha-tuned transcranial alternating current stimulation (tACS) applied over IPL on Îź-suppression during hands movement observation from an egocentric and allocentric perspective. Electroencephalography (EEG) was recorded during movement observation before and immediately after tACS. Results demonstrated that tACS decreased Îź-reactivity over sensorimotor (but not visual) regions for egocentric (but not allocentric) movement observation providing direct evidence for a causal involvement of IPL in the observation of self- but not other-related hands movement

    Information-Based Approaches of Noninvasive Transcranial Brain Stimulation

    Get PDF
    Progress in cognitive neuroscience relies on methodological developments to increase the specificity of knowledge obtained regarding brain function. For example, in functional neuroimaging the current trend is to study the type of information carried by brain regions rather than simply compare activation levels induced by task manipulations. In this context noninvasive transcranial brain stimulation (NTBS) in the study of cognitive functions may appear coarse and old fashioned in its conventional uses. However, in their multitude of parameters, and by coupling them with behavioral manipulations, NTBS protocols can reach the specificity of imaging techniques. Here we review the different paradigms that have aimed to accomplish this in both basic science and clinical settings and follow the general philosophy of information-based approach

    The speed of parietal theta frequency drives visuospatial working memory capacity

    Get PDF
    The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta–gamma phase coupling theory of WM capacity
    • …
    corecore