
 1 

Transcranial Alternating Current Stimulation to the Inferior Parietal Lobe 
Decreases Mu Suppression to Egocentric, but not Allocentric Hand 

Movements 
 
 
 
 
 

 
 

Monica B. Berntsena, Nicholas R. Coopera, Vincenzo Romeia 

a Centre for Brain Science, Department of Psychology, University of Essex CO4 3SQ 
 
 
 
 
 
 
 
 
 

Corresponding author:  
Monica Berntsen 

mbernt@essex.ac.uk 
 
 
 
 
 
 
 
 
 
 

Manuscript Contents 
 

Pages 16 

Tables 0 

Figures 4 

 
 

 
 

 
 
 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/74244309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

ABSTRACT 

Egocentric vs. allocentric perspective during observation of hand movements has 

been related to self-other differentiation such that movements observed from an 

egocentric viewpoint have been considered as self-related while movements 

observed from an allocentric viewpoint have been considered as belonging to 

someone else. Correlational studies have generally found that egocentric 

perspective induces greater neurophysiological responses and larger behavioural 

effects compared to an allocentric perspective. However, recent studies question 

previous findings by reporting greater () suppression and greater transcranial 

magnetic stimulation (TMS) induced motor-evoked potentials (MEPs) during 

observation of allocentric compared to egocentric movements. Furthermore, self-

other differentiation has been generally related to activity within the inferior parietal 

lobe (IPL), but direct evidence for a causal and functional role of IPL in self-other 

differentiation is lacking. The current study was therefore designed to investigate the 

influence that IPL exerts on self-other differentiation. To this aim, we measured the 

impact of individually adjusted alpha-tuned transcranial alternating current 

stimulation (tACS) applied over IPL on -suppression during hands movement 

observation from an egocentric and allocentric perspective. Electroencephalography 

(EEG) was recorded during movement observation before and immediately after 

tACS. Results demonstrated that tACS decreased -reactivity over sensorimotor (but 

not visual) regions for egocentric (but not allocentric) movement observation 

providing direct evidence for a causal involvement of IPL in the observation of self- 

but not other-related hands movement.  

 

Key words: EEG; tACS; self-other differentiation; perspectives; IPL 

 

Word count: 4538 
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INTRODUCTION 

Neuroimaging studies investigating the neural basis of self-recognition and self-other 

differentiation have consistently pointed to the involvement of the inferior parietal 

lobule (IPL) and the inferior frontal gyrus (IFG) (Chaminade & Decety, 2002; Decety 

et al., 2002; Farrer & Frith, 2002; Farrer et al., 2003; Kaplan et al., 2008; Ruby & 

Decety, 2001; Uddin et al., 2006). However, neuropsychological literature suggests 

that the pivotal role is rather played by the IPL. For example, individuals with 

schizophrenia experiencing the passivity phenomenon (the belief that one’s thoughts 

or actions are being controlled by someone else) demonstrate IPL hyperactivity 

(Spence et al., 1997), while lesions to the IPL have been associated with impaired 

ability to imitate (Goldenberg, 1995; Goldenberg & Karnath, 2006) and with 

disruption of body schema and corporeal awareness (Berlucchi & Aglioti, 1997). 

Additionally, disruptive brain stimulation to areas within the IPL (right angular gyrus 

and temporo-parietal junction) results in the out-of-body phenomenon (Blanke et al., 

2002; Blanke et al., 2005) and impaired performance on a self-other discrimination 

task (Uddin et al., 2006).  

 

Self-other relations have frequently been studied by means of perspectives or 

viewpoints (e.g. David et al., 2006; Frenkel-Toledo et al., 2013; Jackson et al., 2006; 

Vogt et al., 2003). Typically, these studies reason that the observation of a 

movement presented as if the observer is conducting the movement (egocentric) is 

more self-related than the observation of the movement observed as if facing 

another agent conducting the movement (allocentric). Hence the neurophysiological 

response during the observation of egocentric movements is a correlate of self-

related actions, while the response to an allocentric movement is related to actions 

conducted by others (e.g. Decety & Chaminade, 2003; Gallagher & Meltzoff, 1996; 

Meltzoff & Decety, 2003). Typically, correlational studies investigating perspectives 

as an indication of self-other differentiation have shown that egocentric stimuli induce 

greater neurophysiological and behavioural responses compared to allocentric 

stimuli. For example, it has been observed: greater cortical activity in the sensory-

motor cortex (Jackson et al., 2006), greater visuomotor interference (Bortoletto et al., 

2013; Vogt et al., 2003) and larger motor-evoked potentials (MEPs) as induced by 

transcranial magnetic stimulation (TMS) during the observation of egocentric 

movements (Maeda et al., 2002). However, these correlational reports have not 



 4 

always been consistent; Alaerts and colleagues (2009) reported that MEPs are not 

necessarily larger for egocentric movements per se; rather, MEP’s are larger for an 

egocentric right hand and for an allocentric left hand. No difference in MEPs between 

perspectives has also been reported by Burgess and colleagues (2013). 

Furthermore, greater suppression in the EEG -rhythm (Frenkel-Toledo et al., 2013) 

and larger TMS induced MEPs (Fitzgibbon et al., 2014) have been reported during 

observation of allocentric hands movements compared to egocentric. In addition to 

these inconsistencies, causal assessment of the neurophysiological underpinning of 

self-other differentiation for egocentric vs. allocentric perspective is currently lacking.   

 

In the present study, we compared EEG -suppression during observation of moving 

hands from both an egocentric and allocentric perspective subsequent to 

transcranial alternating current stimulation (tACS) to the IPL in order to investigate 

the functional relationship between -suppression and self-other differentiation. The 

rationale for this approach is that tACS interferes with ongoing oscillations non-

invasively (Antal & Paulus, 2013) and has been shown to affect behavioural 

performance corresponding to the neuronal network or specific oscillation targeted 

(e.g. Miniussi et al., 2012; Cecere et al., 2015). The -rhythm is generated in the 

sensorimotor cortex and it is known that suppression in  reflects activation of motor-

related processes (Cheyne et al., 2003; Hari et al., 1998; Rossi et al., 2002). -

suppression during observation of movement correlates with cortical activity in the 

IPL and IFG (e.g. Arnstein et al., 2011; Babiloni et al., 2016; Braadbaart et al., 2013), 

and therefore, tACS to the IPL enables a causal investigation of -rhythms during 

observation of egocentric and allocentric perspectives. Given that previous work has 

demonstrated reduced -suppression subsequent to stimulation to the IPL and IFG 

(Keuken et al., 2011; Puzzo et al., 2013), we predicted offline tACS over IPL to have 

a comparable impact. Two alternative hypotheses were made: 1) if IPL is specifically 

attuned to self-related stimuli (e.g. Kaplan et al., 2008; Uddin et al., 2006) then we 

expect tACS to selectively reduce -suppression during observation of egocentric 

(but not allocentric) movements; 2) if IPL is reactive to both self- and other-related 

stimuli alike (e.g. Spence et al., 1997; Goldenberg & Karnath, 2006) then we predict 

reduced -suppression following IPL stimulation regardless of perspective. 
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EXPERIMENTAL PROCEDURE 

Participant selection  

In total, 21 participants (10 females) were screened in relation to their suitability for 

tACS using the TMS safety screening questionnaire (TASS: Keel et al., 2001) and 

reported not suffering any known mental or neuropsychiatric conditions. Participants’ 

age ranged between 18 and 35 (mean age = 23.71 SD = 4.69) and were randomly 

allocated to either active tACS or sham stimulation. All participants were right 

handed, signed the informed consent form, and were paid GB £10 for their time. The 

local ethics committee (Department of Psychology, University of Essex) granted 

ethical approval.  

 

Stimuli 

Participants observed video presentations of a female actor opening and closing her 

left or right hand (one at the time) at a rate of 1 Hz. These videos were based on 

stimuli used by several others (e.g. Bernier et al., 2007; Oberman et al., 2005; Puzzo 

et al., 2011; Raymaekers et al., 2009), but adapted to include both left and right 

hand. Two hands were included rather than one in light of Alaerts and colleagues 

(2009) finding that the effect of perspective may depend on the observed hand (left 

vs. right). The hands were visibly Caucasian skin coloured, presented against a 

black background, and shown from the egocentric and allocentric perspective. 

Images of these perspectives are presented in Figure 1 below.  

 

 

Fig. 1. Graphical representation of hands from egocentric (a) and allocentric (b) perspective. 

 

Hand movement sequences were constructed using Motion 5 (Apple Inc. version 

5.1.2) video editing program. Videos included 5 sequences of various combinations 

of the left and right hand opening and closing. Each movement lasted 1 second x 5 

movements = 5 seconds. 
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A schematic example of a hands movements sequence is presented in Figure 2 

below. 

 

 

Fig. 2. Example of a hands movements sequence. Ten different egocentric and ten different 
allocentric sequences were presented twice in a randomised order before stimulation. A new 
set of ten sequences was presented twice for both the egocentric and allocentric perspective 
after stimulation: pre-stimulation period = 40 trials (20 x egocentric, 20 x allocentric); post-
stimulation = 40 trials (20 x egocentric, 20 x allocentric).  

 

Procedure 

Participants completed an informed consent form and were fitted with electrodes to 

record eye movements and reference signal. Skin surface underlying electrodes for 

recording eye movements and reference signal were lightly abraded to reduce 

impedance of electrode-to-skin contact. Next, a 64-channel quick-cap 

(Compumedics, Neuroscan) was fitted for the EEG. Resting EEG was recorded for 

two minutes with eyes-open, before completing Croft & Barry’s (2000) eye-

movement calibration protocol. Subsequently, individual alpha frequency (IAF) was 

defined based on individual peaks in alpha. In order to establish IAF, the resting 

period was epoched to 1024 data points and subsequently the time domain data 

were transferred into power values in the frequency domain using fast Fourier 

transformation (FFT). IAF was defined based on each individual’s most commonly 

occurring peak frequency between 8 and 12Hz over parietal and occipital electrodes 

(P3, P1, Pz, P2, P4, O1, Oz, O2). The occipital and parietal sites were chosen based 

on the rationale that alpha oscillations are strongest over these areas, and due to 
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numerous previous studies also using these electrodes to define IAF (e.g. Klimesch, 

1999; Puzzo et al., 2013; Grandy et al., 2013; Gutman et al., 2015; Haegens et al., 

2014; Cecere et al., 2015). Graphical representation and details of procedure are 

provided in Figure 3 below.  

 

 

 

Fig. 3. Procedure. Each trial started with a 1000ms fixation cross, followed by a 5000ms 
video clip. Participants were assigned either to a tACS or sham stimulation condition and 
attended one block of 20 egocentric and 20 allocentric trials before stimulation, and another 
block of 20 new egocentric and 20 new allocentric trials after the stimulation period.  

 

tACS procedure  

Participants were randomly allocated to either active tACS or sham stimulation. Nine 

participants received sham stimulation while 11 received active tACS. Active tACS 

was delivered via two surface conductive-rubber electrodes (3 x 3 cm) enclosed in 

saline-soaked sponges sown to the inside of the EEG cap. The small size tACS 

electrodes were chosen to avoid overlap with more than one EEG electrode per 

tACS electrode. One stimulation electrode was positioned over the IPL (P3 on the 

10/20 system) and the other was positioned over the contralateral frontal polar (FP2 

on the 10/20 system) in line with the electrode montage used in several previous 

studies targeting this area (e.g. Wach et al., 2013; Moliadze et al., 2010; Nitsche & 

Paulus, 2000; Moliadze et al., 2012).  

 

An alternating sinusoidal current individually adjusted (IAF) was delivered by a 

battery-operated stimulator system (DC-Stimulator Plus, NeuroConn GmbH, 
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Ilmenau, Germany). Current intensity was set to 1mA (peak-to-peak) in accordance 

with numerous previous studies (e.g. Wach et al., 2013; Moliadze et al., 2012) and 

safety protocols regarding DC and AC stimulation (Iyer et al., 2005; Nitsche et al., 

2003). Impedance was kept below 10 kΩ. Active tACS was applied for 20 minutes 

based on work by Neuling and colleagues (2013) that indicated sustained after-

effects lasting at least 30 minutes when applying 1 mA tACS for 20 minutes at IAF. 

The current intensity was faded-in and faded-out for 10 seconds to avoid perception 

of retinal phosphenes. The sham group received active stimulation for the first and 

last 10 seconds in order to elicit the typical tingling sensation under the electrode at 

the beginning of stimulation. The sham stimulation was delivered under the same 

parameters as the tACS group.  

 

 

EEG data acquisition and preparation 

EEG data were recorded using Synamps II amplifiers and SCAN 4.5 acquisition 

software (Compumedics, Melbourne, Australia) using 64 electrodes mounted on a 

quick-cap with electrodes arranged according to the extended 10-20 system. 

Electrodes were referenced online to an electrode on the left mastoid and grounded 

on AFz. Eye movements were recorded using four electrodes; above and below the 

left eye and on the outer canthi of each eye. Impedances for all of the electrodes 

were lowered to at least 10 kΩ in all electrodes before data acquisition. EEG data 

were sampled continuously at 1000Hz with a band-pass filter of .05 - 200Hz and a 

50Hz notch filter.  

 

Once acquired, data were visually inspected and bad electrodes were rejected on a 

participant-by-participant basis. Eye-movement artefacts were rejected according to 

methods described by Croft & Barry (2000). All data were re-referenced to a 

common average reference, before undergoing demodulation and concurrent 

filtering (zero phase-shift, 24 dB roll-off, envelope computed). The data were then 

epoched from –2000 to 7000ms, and trimmed 1000ms from each end to remove 

filter warm-up artifacts. Remaining artefacts exceeding ± 100 mV were automatically 

rejected in an automatic rejection sweep before event-related 



 9 

desynchronization/synchronization (ERD/ERS) between the reference period (-

1000ms to 0ms) and active period (0 to 5000ms) was calculated using the event-

related bandpower function in Neuroscan Edit 4.4 (Compumedics, Melbourne, 

Australia). 

 

Electrodes of interest included: (i) central channels (C3, C1, C2, C4), as it is well 

established that -rhythms are generated in, and recorded over sensorimotor areas 

(Cheyne et al., 2003; Hari et al., 1998; Rossi et al., 2002); and (ii) occipital channels 

(O1, O2), as control electrodes to ensure that sensorimotor α reflected motor-related 

processes and not activity of the visual cortex. α-rhythms originating in the occipital 

region are associated with visual attention processes (e.g. Foxe et al., 1998) while α-

rhythms generated by the sensorimotor cortex are related to motor processes (e.g. 

Hari et al., 1998).  

 

The bandwidth of interest was α (8 – 12Hz), which was further split into two sub-

components: lower (αlow: 8 - 10Hz) and upper (αhigh: 10 - 12Hz) because functions 

associated with each end of the α spectrum are known to differ (Klimesch et al., 

2007; Petsche et al., 1997; Aftanas & Golocheikine, 2001).  

 

Data analysis 

Data from all participants were included for analysis. A Kolmogorov–Smirnov test of 

normality confirmed that the data were normally distributed (p > .05). In order to 

ensure that observing movements from egocentric and allocentric perspectives 

induced significant change in -reactivity, we compared -reactivity during 

observation of perspectives pre and post stimulation for sham and tACS with zero 

(zero indicating no change between reference period and active period) in one-

samples t-tests. For this analysis, given that no difference across hemispheres was 

found, the factor hemisphere was collapsed to keep comparisons to a minimum. 
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Subsequently, we investigated the effect of tACS to the IPL on -reactivity during 

hands movements from an egocentric and allocentric perspective separately for 

sensorimotor and occipital areas (for a similar approach see e.g. Perry, Troje and 

Bentin, 2010). The rationale for this approach is as follows: it is known that occipital 

α-power (and suppression) is functionally different (Hari et al., 1998; Pineda, 2005) 

and demonstrates greater power (and suppression) than sensorimotor α (e.g. Perry, 

Stein and Bentin, 2011). Consequently, we wanted to ensure that any effects in the 

sensorimotor region were not shadowed by the spreading of occipital α towards 

sensorimotor channels. Importantly, we did not expect tACS to affect the occipital 

region given that occipital α is associated primarily with visual attention (e.g. Foxe, 

Simpson & Ahlfors, 1998), whereas μ is associated with motor processes (e.g. Hari 

et al., 1998) and, as more recently shown, with sense of agency (Serino et al., 2015). 

The ANOVAs conducted included the following factors: “time” (with two levels: pre-

stimulation, post-stimulation), “perspective” (with two levels: egocentric, allocentric), 

“hemisphere” (with two levels: left [C3, C1], right [C2, C4]), and one between-

subjects factor “stimulation condition” (with two levels: sham stimulation, active 

tACS). For the occipital area, the factor hemisphere included two levels: left (O1) and 

right (O2). It was expected to find an interaction between the factors “time”, 

“perspective”, and “stimulation condition” in the sensorimotor area only given that 

occipital regions are not motor in nature. In the event of such a finding, the following 

pairs were compared within groups: (a) egocentric hands movements pre-stimulation 

vs. post-stimulation ERD; (b) allocentric pre-stimulation vs. post-stimulation ERD. 

These comparisons were Bonferroni corrected.  

 

Next, two one-way analysis of covariance (ANCOVA) were conducted to control for 

the possible confounding influence of pre-stimulation ERD values on post-stimulation 

ERD values. This analysis was done given that alpha-power demonstrates large 

inter-individual differences relating to age and cognitive performance (Klimesch et 

al., 1998). One ANCOVA was conducted for the egocentric hands movements, and 

the other for the allocentric hands movements. This analysis was conducted with 

post-stimulation μ-ERD as the dependent variable, stimulation condition as the fixed 

factor, and ERD values in the pre-stimulation as the covariate.  
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RESULTS 

Sensorimotor area 

The result of the one-samples t-tests indicated that the ERD observed during both 

egocentric and allocentric hands movements in both pre and post stimulation differed 

significantly from zero for both the sham and the active tACS in αlow  (8 – 10 Hz) and 

αhigh (10 – 12 Hz): all ts(20) > 2.53, ps < .020, suggesting that a significant 

suppression in α-power was observed during observation of hands movements 

relative to the reference period.  

 

The results of the repeated measures ANOVA revealed a significant interaction 

between the factors time, perspective, and stimulation condition in αhigh: F(1, 19) = 

4.72, p = .043, ηp
2 = 0.199, which was only marginally significant in αlow (p > .057). 

Planned comparisons in αhigh, revealed a significant change explained by a reduced 

-suppression pre to post for the tACS group during observation of egocentric hands 

movements (p = .014), but not during any other pair (ps > .153). This result is 

presented in Figure 4a and suggests that tACS was effective in reducing -

suppression. Additionally the impact of tACS was selective for egocentric hands 

movements, suggesting a selective involvement of IPL in egocentric (but not 

allocentric) hands movements. 

 

The results of the ANCOVA for the egocentric hands movements yielded a 

significant effect for both the covariate (pre-stimulation ERD values): F(1, 19) = 6.67, 

p = .019, ηp
2 = 0.270, and the stimulation condition: F(1, 19) = 12.44, p = .002, ηp

2 = 

0.409, further confirming that tACS significantly reduced αhigh-ERD during 

observation of egocentric hands movements. The ANCOVA for the allocentric hands 

movements did not reveal a significant effect for either the covariate or the 

stimulation condition (ps > .308) again confirming previous analysis showing no 

modulation of ERD in αhigh by tACS during allocentric hands movements. This result 

is presented in Figure 4b below.  
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Fig. 4. Sensorimotor (C1/C2/C3/C4) αhigh percentage change for (a) Interaction between 
factors time, perspective and stimulation condition (b) post-stimulation ERD corrected for 
pre-stimulation variance. Bars represent percentage change in αhigh during observation of 
hands movements from egocentric and allocentric perspectives, pre and post stimulation for 
each stimulation group. Error bars indicate standard error. Note: positive values represent 
ERD. * p < 0.05. 

 

Occipital area 

The results of the repeated measures ANOVA indicated no significant main effects 

or interactions in either αlow (8 – 10Hz) or αhigh (10 – 12Hz) (ps > .075), suggesting 

that occipital α was not affected differentially by either perspective or by tACS.  

 

DISCUSSION 

These results provide direct evidence that the IPL is essential in self-other 

differentiation (Spence et al., 1997; Blanke et al., 2002; Uddin et al., 2006) as -

suppression during observation of hands movements significantly decreased 

subsequent to IPL-stimulation. In addition, our results support a neurophysiological 
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advantage for self-related stimuli (Jackson, Meltzoff, & Decety, 2006; Maeda, 

Kleiner-Fisman, & Pascual-Leone, 2002) as subsequent to IPL-stimulation, -

suppression only decreased for the egocentric hands movements. Given that we 

observed no effect on -suppression during observation of allocentric hands 

movements subsequent to stimulation, we suggest that other neural mechanisms are 

involved in the processing of allocentric hands movements. The human mirror 

neuron system (hMNS), which is characterised by neuronal activation during both 

execution and observation of the same movement, has been associated with self-

other differentiation by means of motor simulation (e.g. Jackson, Meltzoff, & Decety, 

2006; Kaplan et al., 2008; Uddin et al., 2007). -suppression during action 

observation is a putative index of hMNS activity (e.g. Muthukumaraswamy & 

Johnson, 2004; Pineda, 2005), and the core areas of the hMNS consists of both IPL 

and IFG (e.g. Rizzolatti & Craighero, 2004). Therefore, our results may support the 

involvement of hMNS in self-other differentiation, but more specifically that the IPL is 

more strongly related to egocentric movements.  

 

Involvement of  in processing of allocentric hands movements as suggested by 

Frenkel-Toledo and colleagues (2013) is at odds with previous literature suggesting 

that greater -suppression reflects greater sensory-motor resonance (e.g. Pineda, 

2005; Rizzolatti et al., 2001) and has been associated with greater sense of agency 

(e.g. Serino et al., 2015). However, there is some support for their findings as 

Fitzgibbon and colleagues’ (2014) also reported larger neurophysiological responses 

to allocentric movements compared to egocentric in the form of TMS induced MEPs. 

Our results demonstrated -suppression during both egocentric and allocentric 

movements, however, after tACS we only observed reduced -suppression during 

observation of egocentric movements. Given that we stimulated IPL, and observed 

no modulation of -suppression during allocentric movements, it is conceivable that 

the pattern of -suppression reported by Frenkel-Toledo and colleagues reflected 

cortical activity originating from another region. The IFG is involved in self-other 

differentiation (e.g. Kaplan et al., 2008; Devue et al., 2007), and also influences -

reactivity (Arnstein et al., 2011; Babiloni et al., 2016; Braadbaart, Williams, & Waiter, 

2013). Therefore, it is plausible that -suppression as reported by Frenkel-Toledo 

and colleagues could originate from a different area than IPL, such as IFG. While 
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further research should investigate the role of the IFG in processing allocentric 

movements, here we already causally demonstrate that -suppression during 

allocentric hands movements was not affected by tACS to the IPL, suggesting that 

the IPL is not involved in processing allocentric hands movements. Thus, the IPL’s 

role in self-other differentiation may be to recognize self-related stimuli. It is possible 

that the modulation of IPL activity could impact perception of hands movements from 

both egocentric and allocentric perspectives given that interfering with IPL has been 

shown to selectively disrupt performance on self-other discrimination (Uddin et al., 

2006). This possibility should be more directly tested in the future. 

 

Previous literature has suggested that the right hemisphere is involved in processing 

self-related and egocentric stimuli, while the left hemisphere is involved in processes 

relating to other agents and allocentric stimuli (e.g. Kaplan et al., 2008; Uddin et al., 

2006); although not consistently as the reverse has also been reported (Chaminade 

& Decety, 2002; Decety et al., 2002; Farrer & Frith, 2002). We observed no 

interaction between perspective and hemisphere in our data, and therefore, our 

results do not enlighten previous inconsistencies. This failure may however be 

related to the fact that we presented both hands (left and right hand) rather than one 

hand (left or right), because presentation of both hands is likely to induce bilateral 

activity in the motor cortex rather than activity in the contralateral hemisphere to the 

observed movement. Some of the inconsistencies reported in relation to hemisphere 

may be related to the way in which self-other relations have been investigated, as 

different experimental protocols have been employed to examine this issue. For 

example, some studies investigated neural correlates of agency i.e. the experience 

of oneself as the cause of an action (Farrer et al., 2002; 2003), while others explored 

reciprocal imitation (e.g. Decety et al., 2002) or recognition of self vs. others’ faces 

and voices (e.g. Kaplan et al., 2008). Future studies should aim to clarify under 

which conditions hemisphere is relevant in self-other differentiation or rather conveys 

other, second-order components unrelated to self-other relations per se. 

 

It is conceivable that ‘familiarity’ confounded our results, as the visual presentation of 

hands from an egocentric perspective is more visually similar to our own hands that 
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we see more frequently than we see other peoples’ hands. To this extent, it has 

been demonstrated that neuronal responses to a movement increases with exposure 

or training (e.g. Calvo-Merino et al., 2005). However, given that the opposite effect of 

‘familiarity’ has also been reported (e.g. Babiloni et al., 2010), this possibility remains 

speculative. One may also question whether observation of a movement from the 

egocentric perspective can be perceived as belonging to the self more than to 

others. It has been demonstrated that observation of a virtual morphed face can be 

processed and perceived as more similar to one’s own face if it moves in synchrony 

with the observer’s self-initiated movements (Serino et al., 2015). It is assumed that 

this effect is due to matching between predicted proprioceptive and somatosensory 

consequences of executed movements and visual feedback. However, participants 

in our study only observed movements and therefore it is unlikely that they perceived 

the observed movement as belonging to themselves, as voluntary movement results 

in somatosensory feedback (Blakemore et al., 1998) that is not experienced when 

observing movements. Nevertheless, it is known that mirror neurons fire during 

execution and observation of the same movements (Mukamel et al., 2010), and 

therefore, the neurophysiological response during self-produced movements 

overlaps with observation of self-related movements. This effect has however only 

been recorded during observation of egocentric simple hands movements. There is 

no direct evidence in the human cortex to suggest that allocentric hands movements 

trigger the same mirror neuron response, although there is indirect evidence (e.g. 

Frenkel-Toledo et al., 2013). However, this purported link requires further 

investigation. Little is known about the link between IPL activity and perception of 

movements from perspectives. Future studies should aim to investigate whether 

there is perceptual dissociation between egocentric and allocentric perspectives that 

is related to activity in IPL.  

 

Another consideration is that observation of allocentric movements may be 

processed as the rotated version of the egocentric movement rather than belonging 

to someone else per se. This rotation would arguably require a greater level of 

processing, and may explain Frenkel-Toledo and colleagues’ (2013) finding that an 

allocentric perspective of a movement induced greater -suppression compared to 
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an egocentric perspective, as it is known that sensorimotor suppression is enhanced 

by task demands and cognitive load (Klimesch, Schimke, & Pfurtscheller, 1993; 

Klimesch et al., 1998; Brinkman et al., 2014). However, we did not observe a 

significant effect for the factor perspective, suggesting that this possibility is unlikely. 

The effects observed in the current study are rather attributed to the expression of 

self and other-related perspective.  

 

There are a small number of potential limitations of our study as well as additional 

considerations in regards to the effect of tACS as reported here. First of all, despite 

the fact that our results demonstrated a reduction in αhigh-ERD subsequent to tACS, 

we cannot ascertain the exact neurophysiological mechanism of action of our offline 

approach. The mechanism behind tACS after-effects is assumed to be different from 

online entrainment effects, but this is currently debated (see Veniero et al., 2015 & 

Vossen et al., 2015). Secondly, it is known that the effects of transcranial electrical 

stimulation (including tACS) become more dispersed before reaching brain tissue as 

a consequence of passing through scalp and skull (e.g. Antal & Paulus, 2013). 

Therefore, the effect of the stimulation may have also influenced other nearby 

regions. However, as the IPL is a broad area including several regions implicated in 

self-other discrimination such as the angular gyrus and temporo-parietal junction 

(Blanke et al., 2002; Blanke et al., 2005), this lack of spatial focality may have played 

at advantage of the manipulation efficacy by ensuring frequency-specific targeting of 

the relevant areas relating to self-other differentiation (see Romei et al., 2016 for a 

recent review on information-based approaches of non-invasive transcranial brain 

stimulation). Third, it should be noted that we did apply tACS exclusively over IPL. 

Therefore we cannot ascertain whether the effects reported here are site specific 

(but see above regarding spatial focality of tACS). Future research should test 

whether stimulation of other areas such as the IFG or another control site would lead 

to a different outcome. For example a differential impact of IFG stimulation relative to 

IPL on u-suppression for allocentric vs. egocentric perspective could be an intriguing 

working hypothesis to be tested also in relation to previous contradicting findings 

(Frenkel-Toledo et al., 2013; Fitzgibbon et al., 2014).  
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Fourth, we did not assess blinding directly. However it has to be noted that our tACS 

protocol was run offline, therefore ruling out any direct potential impact of 

phosphenes that might have been perceived during the stimulation. It might be 

argued that tACS induced retinal phosphenes that may consequently entrained 

oscillatory activity rather than the actual cortical stimulation. Nonetheless, this 

occurrence would hardly explain the selective sensorimotor (vs. occipital) impact 

induced by our tACS manipulation. Therefore, we can confidently exclude that any 

potentially induced tACS retinal phosphenes might have had a significant impact 

under our experimental design.  Lastly, our sample size was based on previous and 

comparable tACS work eliciting significant effects (e.g. Moliadze et al., 2012; 

Neuling, Rach, & Hermann, 2013). Although we found a sizeable effect as in 

previous reports, we also observed a different ERD pattern between groups prior to 

stimulation, and thus we recognize that a larger sample size would be beneficial and 

could reduce inter-individual variance in α-power. 

 

In summary, we demonstrated a causal relationship between cortical activity in IPL 

and processing self-related stimuli, as tACS to the IPL lead to reduced -

suppression during observation of egocentric hands movements only. This finding 

suggests that the IPL is directly involved in processing self-related stimuli and to a 

greater extent than stimuli relating to others.  
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