243 research outputs found

    The spatial logic of fear

    Get PDF
    Peripersonal space (PPS) refers to the space surrounding the body. PPS is characterised by distinctive patterns of multisensory integration and sensory-motor interaction. In addition, facial expressions have been shown to modulate PPS representation. In this study we tested whether fearful faces lead to a different distribution of spatial attention, compared to neutral and joyful faces. Participants responded to tactile stimuli on the cheeks, while watching looming neutral, joyful (Experiment 1) or fearful (Experiment 2) faces of an avatar, appearing in far or near space. To probe spatial attention, when the tactile stimulus was delivered, a static ball briefly appeared central or peripheral in participant's vision, respectively ≈1° or ≈10° to the left or right of the face. With neutral and joyful faces, simple reactions to tactile stimuli were facilitated in near rather than in far space, replicating classic PPS effects, and in the presence of central rather than peripheral ball, suggesting that attention may be focused in the immediate surrounding of the face. However, when the face was fearful, response to tactile stimuli was modulated not only by the distance of the face from the participant, but also by the position of the ball. Specifically, in near space only, response to tactile stimuli was additionally facilitated by the peripheral compared to the central ball. These results suggest that as fearful faces come closer to the body, they promote a redirection of attention towards the periphery. Given the sensory-motor functions of PPS, this fear-evoked redirection of attention would enhance the defensive function of PPS specifically when it is most needed, i.e. when the source of threat is nearby, but its location has not yet been identified

    Fearful faces modulate spatial processing in peripersonal space: An ERP study

    Get PDF
    Peripersonal space (PPS) represents the region of space surrounding the body. A pivotal function of PPS is to coordinate defensive responses to threat. We have previously shown that a centrally-presented, looming fearful face, signalling a potential threat in one's surroundings, modulates spatial processing by promoting a redirection of sensory resources away from the face towards the periphery, where the threat may be expected – but only when the face is presented in near, rather than far space. Here, we use electrophysiological measures to investigate the neural mechanism underlying this effect. Participants made simple responses to tactile stimuli delivered on the cheeks, while watching task-irrelevant neutral or fearful avatar faces, looming towards them either in near or far space. Simultaneously with the tactile stimulation, a ball with a checkerboard pattern (probe) appeared to the left or right of the avatar face. Crucially, this probe could either be close to the avatar face, and thus more central in the participant's vision, or further away from the avatar face, and thus more peripheral in the participant's vision. Electroencephalography was continuously recorded. Behavioural results confirmed that in near space only, and for fearful relative to neutral faces, tactile processing was facilitated by the peripheral compared to the central probe. This behavioural effect was accompanied by a reduction of the N1 mean amplitude elicited by the peripheral probe for fearful relative to neutral faces. Moreover, the faster the participants responded to tactile stimuli with the peripheral probe, relative to the central, the smaller was their N1. Together these results, suggest that fearful faces intruding into PPS may increase expectation of a visual event occurring in the periphery. This fear-induced effect would enhance the defensive function of PPS when it is most needed, i.e., when the source of threat is nearby, but its location remains unknown

    Pulvinar Lesions Disrupt Fear-Related Implicit Visual Processing in Hemianopic Patients

    Get PDF
    The processing of emotional stimuli in the absence of awareness has been widely investigated in patients with lesions to the primary visual pathway since the classical studies on affective blindsight. In addition, recent evidence has shown that in hemianopic patients without blindsight only unseen fearful faces can be implicitly processed, inducing enhanced visual encoding (Cecere et al., 2014) and response facilitation (Bertini et al., 2013, 2017) to stimuli presented in their intact field. This fear-specific facilitation has been suggested to be mediated by activity in the spared visual subcortical pathway, comprising the superior colliculus (SC), the pulvinar and the amygdala. This suggests that the pulvinar might represent a critical relay structure, conveying threat-related visual information through the subcortical visual circuit. To test this hypothesis, hemianopic patients, with or without pulvinar lesions, performed a go/no-go task in which they had to discriminate simple visual stimuli, consisting in Gabor patches, displayed in their intact visual field, during the simultaneous presentation of faces with fearful, happy, and neutral expressions in their blind visual field. In line with previous evidence, hemianopic patients without pulvinar lesions showed response facilitation to stimuli displayed in the intact field, only while concurrent fearful faces were shown in their blind field. In contrast, no facilitatory effect was found in hemianopic patients with lesions of the pulvinar. These findings reveal that pulvinar lesions disrupt the implicit visual processing of fearful stimuli in hemianopic patients, therefore suggesting a pivotal role of this structure in relaying fear-related visual information from the SC to the amygdala

    Crossmodal visual-tactile extinction: Modulation by posture implicates biased competition in proprioceptively reconstructed space

    Get PDF
    Extinction is a common consequence of unilateral brain injury: contralesional events can be perceived in isolation, yet are missed when presented concurrently with competing events on the ipsilesional side. This can arise crossmodally, where a contralateral touch is extinguished by an ipsilateral visual event. Recent studies showed that repositioning the hands in visible space, or making visual events more distant, can modulate such crossmodal extinction. Here, in a detailed single-case study, we implemented a novel spatial manipulation when assessing crossmodal extinction. This was designed not only to hold somatosensory inputs and hand/arm-posture constant, but also to hold (retinotopic) visual inputs constant, yet while still changing the spatial relationship of tactile and visual events in the external world. Our right hemisphere patient extinguished left-hand touches due to visual stimulation of the right visual field (RVF) when tested in the usual default posture with eyes/head directed straight ahead. But when her eyes/head were turned to the far left (and any visual events shifted along with this), such that the identical RVF retinal stimulation now fell at the same external location as the left-hand touch, crossmodal extinction was eliminated. Since only proprioceptive postural cues could signal this changed spatial relationship for the critical condition, our results show for the first time that such postural cues alone are sufficient to modulate crossmodal extinction. Identical somatosensory and retinal inputs can lead to severe crossmodal extinction, or none, depending on current posture

    The Enfacement Illusion Is Not Affected by Negative Facial Expressions

    Get PDF
    Enfacement is an illusion wherein synchronous visual and tactile inputs update the mental representation of one’s own face to assimilate another person’s face. Emotional facial expressions, serving as communicative signals, may influence enfacement by increasing the observer’s motivation to understand the mental state of the expresser. Fearful expressions, in particular, might increase enfacement because they are valuable for adaptive behavior and more strongly represented in somatosensory cortex than other emotions. In the present study, a face was seen being touched at the same time as the participant’s own face. This face was either neutral, fearful, or angry. Anger was chosen as an emotional control condition for fear because it is similarly negative but induces less somatosensory resonance, and requires additional knowledge (i.e., contextual information and social contingencies) to effectively guide behavior. We hypothesized that seeing a fearful face (but not an angry one) would increase enfacement because of greater somatosensory resonance. Surprisingly, neither fearful nor angry expressions modulated the degree of enfacement relative to neutral expressions. Synchronous interpersonal visuo-tactile stimulation led to assimilation of the other’s face, but this assimilation was not modulated by facial expression processing. This finding suggests that dynamic, multisensory processes of self-face identification operate independently of facial expression processing

    Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex.

    Get PDF
    Recent fMRI evidence has detected increased medial prefrontal activation during contemplation of personal moral dilemmas compared to impersonal ones, which suggests that this cortical region plays a role in personal moral judgment. However, functional imaging results cannot definitively establish that a brain area is necessary for a particular cognitive process. This requires evidence from lesion techniques, such as studies of human patients with focal brain damage. Here, we tested 7 patients with lesions in the ventromedial prefrontal cortex and 12 healthy individuals in personal moral dilemmas, impersonal moral dilemmas and non-moral dilemmas. Compared to normal controls, patients were more willing to judge personal moral violations as acceptable behaviors in personal moral dilemmas, and they did so more quickly. In contrast, their performance in impersonal and non-moral dilemmas was comparable to that of controls. These results indicate that the ventromedial prefrontal cortex is necessary to oppose personal moral violations, possibly by mediating anticipatory, self-focused, emotional reactions that may exert strong influence on moral choice and behavior

    Bisecting the mental number line in near and far space

    Get PDF
    Much evidence suggests that common posterior parietal mechanisms underlie the orientation of attention in physical space and along the mental number line. For example, the small leftward bias (pseudoneglect) found in paper-and-pencil line bisection is also found when participants "bisect" number pairs, estimating (without calculating) the number midway between two others. For bisection of physical lines, pseudoneglect has been found to shift rightward as lines are moved from near space (immediately surrounding the body) to far space. We investigated whether the presentation of stimuli in near or far space also modulated spatial attention for the mental number line. Participants bisected physical lines or number pairs presented at four distances (60, 120, 180, 240 cm). Clear rightward shifts in bias were observed for both tasks. Furthermore, the rate at which this shift occurred in the two tasks, as measured by least squares regression slopes, was significantly correlated across participants, suggesting that the transition from near to far distances induced a common modulation of lateral attention in physical and numerical space. These results demonstrate a tight coupling between number and physical space, and show that even such prototypically abstract concepts as number are modulated by our on-line interactions with the world

    Visual enhancement of touch and the bodily self

    Get PDF
    We experience our own body through both touch and vision. We further see that others’ bodies are similar to our own body, but we have no direct experience of touch on others’ bodies. Therefore, relations between vision and touch are important for the sense of self and for mental representation of one’s own body. For example, seeing the hand improves tactile acuity on the hand, compared to seeing a non-hand object. While several studies have demonstrated this visual enhancement of touch (VET) effect, its relation to the ‘bodily self’, or mental representation of one’s own body remains unclear. We examined whether VET is an effect of seeing a hand, or of seeing my hand, using the rubber hand illusion. In this illusion, a prosthetic hand which is brushed synchronously—but not asynchronously—with one’s own hand is felt to actually be one’s hand. Thus, we manipulated whether or not participants felt like they were looking directly at their hand, while holding the actual stimulus they viewed constant. Tactile acuity was measured by having participants judge the orientation of square-wave gratings. Two characteristic effects of VET were observed: (1) cross-modal enhancement from seeing the hand was inversely related to overall tactile acuity, and (2) participants near sensory threshold showed significant improvement following synchronous stroking, compared to asynchronous stroking or no stroking at all. These results demonstrate a clear functional relation between the bodily self and basic tactile perception
    corecore