1,499 research outputs found

    Advancing NLP with Cognitive Language Processing Signals

    Get PDF
    When we read, our brain processes language and generates cognitive processing data such as gaze patterns and brain activity. These signals can be recorded while reading. Cognitive language processing data such as eye-tracking features have shown improvements on single NLP tasks. We analyze whether using such human features can show consistent improvement across tasks and data sources. We present an extensive investigation of the benefits and limitations of using cognitive processing data for NLP. Specifically, we use gaze and EEG features to augment models of named entity recognition, relation classification, and sentiment analysis. These methods significantly outperform the baselines and show the potential and current limitations of employing human language processing data for NLP

    Decoding EEG brain activity for multi-modal natural language processing

    Get PDF
    Until recently, human behavioral data from reading has mainly been of interest to researchers to understand human cognition. However, these human language processing signals can also be beneficial in machine learning-based natural language processing tasks. Using EEG brain activity to this purpose is largely unexplored as of yet. In this paper, we present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks, with a special focus on which features of the signal are most beneficial. We present a multi-modal machine learning architecture that learns jointly from textual input as well as from EEG features. We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal. Moreover, for a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines. For more complex tasks such as relation detection, further research is needed. Finally, EEG data shows to be particularly promising when limited training data is available

    Fish oil omega-3 fatty acids partially prevent lipid-induced insulin resistance in human skeletal muscle without limiting acylcarnitine accumulation

    Get PDF
    This is the author accepted manuscript. The final version is available from Portland Press via the DOI in this record Acylcarnitine accumulation in skeletal muscle and plasma has been observed in numerous models of mitochondrial lipid overload and insulin resistance. Fish oil n3PUFA (omega-3 polyunsaturated fatty acids) are thought to protect against lipid-induced insulin resistance. The present study tested the hypothesis that the addition of n3PUFA to an intravenous lipid emulsion would limit muscle acylcarnitine accumulation and reduce the inhibitory effect of lipid overload on insulin action. On three occasions, six healthy young men underwent a 6-h euglycaemic-hyperinsulinaemic clamp accompanied by intravenous infusion of saline (Control), 10% Intralipid® [n6PUFA (omega-6 polyunsaturated fatty acids)] or 10% Intralipid®+10% Omegaven® (2:1; n3PUFA). The decline in insulin-stimulated whole-body glucose infusion rate, muscle PDCa (pyruvate dehydrogenase complex activation) and glycogen storage associated with n6PUFA compared with Control was prevented with n3PUFA. Muscle acetyl-CoA accumulation was greater following n6PUFA compared with Control and n3PUFA, suggesting that mitochondrial lipid overload was responsible for the lower insulin action observed. Despite these favourable metabolic effects of n3PUFA, accumulation of total muscle acylcarnitine was not attenuated when compared with n6PUFA. These findings demonstrate that n3PUFA exert beneficial effects on insulin-stimulated skeletal muscle glucose storage and oxidation independently of total acylcarnitine accumulation, which does not always reflect mitochondrial lipid overload.This research study was funded by The Royal Society [Grant RG100575]

    Probing the Heterogeneity of Protein Kinase Activation in Cells by Super-Resolution Microscopy

    Get PDF
    Heterogeneity of mitogen-activated protein kinase (MAPK) activation in genetically identical cells, which occurs in response to epidermal growth factor receptor (EGFR) signaling, remains poorly understood. MAPK cascades integrate signals emanating from different EGFR spatial locations, including the plasma membrane and endocytic compartment. We previously hypothesized that in EGF-stimulated cells the MAPK phosphorylation (pMAPK) level and activity are largely determined by the spatial organization of the EGFR clusters within the cell. For experimental testing of this hypothesis, we used super-resolution microscopy to define EGFR clusters by receptor numbers (N) and average intra-cluster distances (d). From this data, we predicted the extent of pMAPK with 85% accuracy on a cell-to-cell basis with control data returning 54% accuracy (P50nm were most predictive for pMAPK level in cells. Electron microscopy revealed that these large clusters were primarily localized to the limiting membrane of multivesicular bodies (MVB). Many tighter packed dimers/multimers (d<50nm) were found on intraluminal vesicles within MVBs, where they were unlikely to activate MAPK because of the physical separation. Our results suggest that cell-to-cell differences in N and d contain crucial information to predict EGFR-activated cellular pMAPK levels and explain pMAPK heterogeneity in isogenic cells

    Medical student case presentation performance and perception when using mobile learning technology in the emergency department

    Get PDF
    Hand-held mobile learning technology provides opportunities for clinically relevant self-instructional modules to augment traditional bedside teaching. Using this technology as a teaching tool has not been well studied. We sought to evaluate medical students&amp;rsquo; case presentation performance and perception when viewing short, just-in-time mobile learning videos using the iPod touch prior to patient encounters.Twenty-two fourth-year medical students were randomized to receive or not to receive instruction by video, using the iPod Touch, prior to patient encounters. After seeing a patient, they presented the case to their faculty, who completed a standard data collection sheet. Students were surveyed on their perceived confidence and effectiveness after using these videos.Twenty-two students completed a total of 67 patient encounters. There was a statistically significant improvement in presentations when the videos were viewed for the first time (p&#x200A;=&#x200A;0.032). There was no difference when the presentations were summed for the entire rotation (p&#x200A;=&#x200A;0.671). The reliable (alpha&#x200A;=&#x200A;0.97) survey indicated that the videos were a useful teaching tool and gave students more confidence in their presentations.Medical student patient presentations were improved with the use of mobile instructional videos following first time use, suggesting mobile learning videos may be useful in medical student education. If direct bedside teaching is unavailable, just-in-time iPod touch videos can be an alternative instructional strategy to improve first-time patient presentations by medical students
    corecore