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ABSTRACT  

Heterogeneity of mitogen-activated protein kinase (MAPK) activation in genetically identical 

cells, which occurs in response to epidermal growth factor receptor (EGFR) signaling, remains 

poorly understood. MAPK cascades integrate signals emanating from different EGFR spatial 

locations, including the plasma membrane and endocytic compartment. We previously 

hypothesized that in EGF-stimulated cells the MAPK phosphorylation (pMAPK) level and 

activity are largely determined by the spatial organization of the EGFR clusters within the cell. 

For experimental testing of this hypothesis, we used super-resolution microscopy to define 

EGFR clusters by receptor numbers (N) and average intra-cluster distances (d). From this data, 

we predicted the extent of pMAPK with 85% accuracy on a cell-to-cell basis with control data 

returning 54% accuracy (P<0.001). For comparison, the prediction accuracy was only 61% 

(P=0.382) when the diffraction-limited averaged fluorescence intensity/cluster was used. Large 

clusters (N≥3) with d>50nm were most predictive for pMAPK level in cells. Electron 

microscopy revealed that these large clusters were primarily localized to the limiting membrane 

of multivesicular bodies (MVB). Many tighter packed dimers/multimers (d<50nm) were found 

on intraluminal vesicles within MVBs, where they were unlikely to activate MAPK because of 

the physical separation. Our results suggest that cell-to-cell differences in N and d contain crucial 

information to predict EGFR-activated cellular pMAPK levels and explain pMAPK 

heterogeneity in isogenic cells.  

KEYWORDS 

Cell-to-cell heterogeneity, EGFR, MAPK, super-resolution microscopy, Bayesian modeling. 
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In recent years it has become evident that an inhomogeneous microenvironment, combined with 

the plasticity of the cancer genome, may lead to a significant degree of functional heterogeneity 

amongst cancer cells of the same tumor.1 The magnitude and timing of the output signal 

commonly varies across a population of genetically identical cells.2 The output signal integrates 

various receptor inputs in space and time and directs important physiological processes such as 

cell proliferation, migration and survival among cells in culture.3 Understanding the possible 

ranges of cellular output heterogeneity and what contributes to them mechanistically would 

represent a major leap forward in cell biology.  

A particularly important example is the mitogen-activated protein kinase (MAPK) pathway, 

which is a signaling hub for multiple cues and spatiotemporally organized intracellular signal 

transmitters.4 Activation of MAPK signaling governs gene expression thereby controlling many 

physiological processes.5 Overexpression of epidermal growth factor receptor (EGFR) has been 

reported for a number of different tumor types.6 This has been postulated to lead to MAPK 

activation by allowing the receptors on the cell membrane to randomly collide and interact with 

one another with high frequency.7 Nanoscale imaging of the plasma membrane using near-field 

scanning optical microscopy (NSOM) has recently shown that EGFR monomers are 

preferentially organized in ∼150nm clusters (i.e. not randomly distributed) in both untreated and 

ligand-stimulated cells.8 Several other studies applied scanning force microscopy to quantify 

EGFR clusters but have been restricted to monitoring their spatial organization only on the 

plasma membrane.9,10 We previously hypothesized that the MAPK signaling activity is largely 

determined by the spatial organization of the EGFR clusters (at a nanometer proximity scale), 

which, together with the associated Shc/Grb2/SOS/RAS/RAF/MEK/MAPK complexes (that 
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usually involve assembling scaffold proteins), will mainly determine the MAPK signaling output 

in individual cells.11 Experimental validation of this hypothesis has not been achieved to date. 

Nowadays super-resolution fluorescence imaging methods can achieve spatial resolutions in the 

tens of nanometers.12-16 This enables the measurement of nanometer intra-cluster distances and 

the number of receptor molecules per cluster throughout a mammalian cell which typically 

spreads in the tens of micrometer range,17-19 identifying individual receptors and their clusters 

located on various structural components. A prior study combined super-resolution microscopy 

and single-molecule FRET to investigate the dynamics and localization of activated EGFR 

dimers on the plasma membrane of live cells.20 A different report applied STORM to provide 

mechanistic insights into EGFR cluster formation.21 However, none of these studies has looked 

at endocytosed EGFRs trafficking to multivesicular bodies (MVBs) located in the perinuclear 

region of a cell.22,23 EGFR clusters continue to signal from the endosomal and MVB membranes, 

activating MAPK via mechanisms that involve scaffold proteins such as MP1.24-26 Little is 

known about the relationship between the cell-to-cell heterogeneity in the spatial organization of 

these EGFR clusters and the functional consequences in the cellular response on a single cell 

level. 

Here, we used generalized single molecule high-resolution imaging with photobleaching 

(gSHRImP) 12,15 to characterize the intra-cellular heterogeneity in MAPK phosphorylation levels 

in response to EGF stimulation on a cell-by-cell basis. Quantum dot (QD) blinking has been 

successfully used as an alternative to photoswitching of organic fluorophores or photo-

activatable proteins.27 We quantified two EGFR cluster parameters, i.e. EGFR molecule number 

per cluster (N) and average intra-cluster distance (d) between any two individual EGFR 

molecules and used them as input parameters for a Bayesian model to predict MAPK signaling 
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output on a cellular basis. We also employed transmission electron microscopy (TEM) to 

determine the spatial location of EGFR clusters in the cells relative to their organelle structures. 

We were able to predict on a cell-by-cell level MAPK phosphorylation states on the basis of 

nanoscale organizational differences in EGFR clusters that are super-resolved. This lends support 

to and extends our previous proposition that the endosomal and MVB membrane localization of 

EGFR clusters can cause an increase in the number (or average lifetime) of signaling complexes, 

in a manner that is dependent on the spatial organization within the receptor oligomeric 

configuration.11 
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RESULTS AND DISCUSSION 

Cell-to-cell heterogeneity in growth factor-stimulated MAPK phosphorylation. MAPK 

(ERK1/ERK2) phosphorylation is a well-studied readout of MAPK pathway activation 

downstream of EGFR activation.  We stimulated the monoclonal breast cancer cell line 

HCC1143 with EGF for various lengths of time at both 4°C and 37°C and analyzed MAPK 

phosphorylation on a population level by immunoblotting (see Supporting Information A, Fig. 

S1) and on a cell-by-cell level by immunofluorescence (Fig. 1). The antibodies we used were 

specific for the residues pT202/pY204 (ERK1) and pT185/pY187 (ERK2), respectively. 

Treatment at 4°C was used to engage receptors with EGF but slow signaling response and 

receptor endocytosis.28 On a population basis, MAPK phosphorylation peaked after 15min of 

EGF treatment at 37°C (Fig. S1A-B). As expected, no MAPK phosphorylation was observed by 

treating cells at 4°C, although phosphorylation of EGFR, immediate adaptor proteins and some 

downstream targets (PI3K and PLCγ) at 15 and 30 min was previously reported.29 Cellular 

heterogeneity of MAPK signaling was revealed by immunofluorescence microscopy after 15min 

or 30min treatment at 37°C, as is demonstrated by the broadening of the anti-pMAPK intensity 

distributions (Fig. 1). Full width half maximum (FWHM) was 138 arbitrary units (a.u.) when 

cells were treated at 4°C for 30min. FWHM increased to 524 a.u. after 15min at 37°C and 

narrowed upon longer treatment (30min at 37°C) to 336 a.u.; hence FWHM ratios (as a measure 

of histogram broadening) as compared to control conditions were 3.8 and 2.4, respectively. This 

shows an increase in range of observed pMAPK output values and reflects heterogenic behavior 

between these otherwise isogenic cells as compared to control conditions (4°C). It is noteworthy 

that averaging of immunofluorescence intensities over many cells led to a result resembling 

immunoblotting (Fig. S1C) as both techniques are averaging over the whole population.  

Page 8 of 32

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 8

Several studies reported on the existence of higher order ErbB multimers and their functional 

relevance to signaling.30-32 EGFR cluster formation has been reported to require EGFR kinase 

activity.30, 33 Members of the ErbB family have been shown to assemble into higher-order 

nanostructures but precise structure-function relationship of these assemblies, in terms of how 

they specify signal output, remains unclear.34,35 High-resolution imaging methods are required to 

investigate the significance of receptor nanoscale organization in regulating its function. Ranges 

of cluster diameters were measured with NSOM and found to have an average diameter of 

150±80 nm EGF-stimulated HeLa cells.8 This study validated and complemented a prior report 

that estimated an average EGFR cluster density of 33/µm2 with 10–30 EGFR receptors per 

cluster in the same cell line.36 

 

Quantitative analysis of EGFR nanoclusters by super-resolution imaging. We employed 

super-resolution microscopy to visualize individual EGFR receptors and their oligomerization 

patterns on the spatial scales below the diffraction limit following EGF stimulation.8 To 

fluorescently label EGFR, we followed a previously reported approach 37 to generate equimolar 

complexes of biotinylated EGF with streptavidin-QD565 (EBSQ) under carefully chosen 

reaction conditions (see Methods). The EBSQ complex was verified to be equivalent with EGF 

in stimulating pMAPK signaling responses and EGFR internalization (see Supporting 

Information B, Fig. S2). The proximity between single EGFR molecules on the nanometer scale 

has been recognized as a prerequisite for receptor activation, and crystallographic studies have 

shown an asymmetric, ligand-induced activated EGFR dimer.38,39 Nanopositioning of EBSQ 

molecules bound to EGFRs was based on the intrinsic capability of QDs to blink and was 

determined using generalized SHRImP 12, 40 as described in Methods. Blinking was assigned to 
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individual QDs based on the observed step-wise intensity changes before and after blinking 

events (Fig. 2A/D). Fig. 2 shows examples of an EGFR dimer (Fig. 2B/C) and an EGFR trimer 

(Fig. 2E/F) including the corresponding intensity vs. time curves (Fig. 2A/D). The purple large 

spot represents the diffraction-limited image of excited EGFRs bound to EBSQ molecules, while 

the super-resolved individual EBSQ-bound EGFR positions are shown in white.  

Our super-resolution technique (see Methods and Supporting Information C) allowed us to 

resolve QDs with up to 15nm lateral resolution.12 Here, the resolution is taken to be the smallest 

distance at which two EGFR molecules could be separated. We estimated the EBSQ complexes 

to be <20nm (see Supporting Information D). A cluster is defined as the group of super-resolved 

receptors within a diffraction-limited spot. Intra-cluster distances (dij) were measured as 

distances between individual QDs using centroid coordinates of each localized QD. In order to 

correlate MAPK activation with EGFR cluster formation under different experimental 

conditions, we measured first, MAPK phosphorylation of a cell using wide-field 

immunofluorescence microscopy as a surrogate for its MAPK pathway activation and, second, 

EGFR cluster organization by EBSQ super-resolution imaging. From the super-resolution 

images we then determined the number of EGFR molecules per cluster (N) and the average intra-

cluster distance between EGFR monomers (d). When super-resolved, the vast majority of the 

diffraction limited EBSQ spots imaged in HCC1143 cells incubated at 4°C were EGFR 

monomers (>70%), with 20% EGFR dimers and the remainder being trimers and, rarely, 

multimers (Fig. 3A). Upon EBSQ treatment at 37°C, this balance shifted dramatically at the 

expense of EGFR monomers. Longer EBSQ stimulation at 37°C (30min) led to a reduction of 

the number of dimers and trimers, but an increase in multimer numbers as compared to shorter 

treatment (15min). This data is in line with previous reports of EGFR cluster formation upon 
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EGF treatment.33, 41 Some of the larger, multimeric clusters could not be spatially resolved and 

hence, could not be included in the prediction of pMAPK based on d or N and d combined. A 

number of clusters with N up to 4-6 were well resolved and included in the analysis (Fig. 3B). 

For simplicity, from here onwards, we will refer to this particular cluster group as “N>3”.  

Using the number of EGFR receptors per cluster (N) to predict cellular MAPK 

phosphorylation. Super-resolution microscopy allowed us to determine two important 

parameters characterizing EGFR nanoclusters, N and d, which were used for a data-driven 

prediction of the MAPK phosphorylation level as an indicator of EGFR signaling. To test 

whether N or d, or both, contain any predictive information regarding the pMAPK intensity 

levels, we used a mathematical model based on a Bayesian Linear Classifier (BLC).42,43 The 

BLC is an algorithm that attempts to find a linear combination of input covariates that can be 

used to predict which class each cell belongs to; classes were either ‘high/activated’ or 

‘low/resting’ MAPK phosphorylation. The pMAPK level was quantified by wide-field 

immunofluorescence microscopy on a cell-by-cell basis by measuring the average fluorescence 

intensity per unit area. Activated and resting cells separated in two groups that were significantly 

different (Fig. 3C; P<0.0001), i.e. ‘high/activated’ or ‘low/resting’. The algorithm was first 

trained to make a classification decision. The cells were randomly separated into a training set 

and a validation set. Initially, the BLC was used to predict pMAPK using N as the only input 

variable. The four covariates used were the fraction of monomers (N =1), dimers (N=2), trimers 

(N=3) and oligomers (N>3) as determined by super-resolution microscopy for each individual 

cell. Fig. 4A shows the training and validation success rates as a function of the number of 

covariates used in the BLC with the corresponding weights shown in Fig. 4B. The trained BLC 

predicted ‘high’ or ‘low’ MAPK phosphorylation classes using these input variables with an 
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accuracy of 65% (P=0.090) in the validation set. To compare, a randomized data set of no 

predictive value yielded a prediction accuracy of 54%. Dimers and trimers were most predictive 

for EGF-induced MAPK phosphorylation, shown by the positive weights (see Methods).  

Prediction of cellular MAPK phosphorylation is improved by inclusion of EGFR nanoscale 

proximity information. First, we tested if intra-cluster distances d alone contain any 

information predictive for pMAPK. Applying BLC as before, we found d alone is not predictive 

for pMAPK (46%; P=0.733; Supporting Information E; Fig. S4). We then combined both 

parameters of EGFR cluster, N and d, to test if this would improve prediction accuracy as 

compared to N alone. We divided the data into six subsets based on the various combinations 

between the number of receptors per cluster (N=2, 3, or >3) and average intra-cluster distance 

(d≤50nm or d>50nm). Applying BLC with this new set of covariates, we achieved a prediction 

accuracy of 85% (P<0.001, Fig. 4C), which was much higher than what could be achieved with 

either of the two parameters individually. Combination of N=4 and N=3 into one covariate 

caused a drop in accuracy from 85% to 78% (the weight of the redefined covariate remains 

positive and statistically significant). Thus, we upheld the previous division of subsets. The 

probability of obtaining a ‘high’ MAPK phosphorylation classification in an individual cell was 

observed to increase with increasing N until N became greater than 3 (Fig. 4A). The ranking of 

the covariate weights of the intra-cluster distance (d) within the N=3 and N>3 clusters revealed 

that d>50nm was positively correlated with a greater extent of MAPK phosphorylation (Fig. 4D; 

N=3: P=0.0465, significant; N>3: P=0.0601, trend), i.e. trimers, and to a lesser extent, multimers 

with an average intra-cluster distance d> 50nm were the top predictive classes. In contrast, 

clusters with d≤50nm were not predictive for MAPK phosphorylation. The quantitative analysis 

presented in Fig. 4 was performed on pooled data obtained from two independent biological 
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experiments for better statistics (individual experimental cohorts and their individual analyses 

are shown in Supporting Information F). The two replicates displayed a similar distribution of 

clusters across the covariate bins used (Fig. S5A) and achieved prediction accuracies of 89% 

(Fig. S5B) and 82% (Fig. S5C), respectively.  

It is noteworthy that the same BLC-based prediction of pMAPK could also be performed using 

diffraction-limited fluorescence microscopy data. When we calculated the best achievable 

predictive accuracy by using averaged fluorescence intensities of EGFR clusters per cell as the 

only input, this resulted in a poor prediction accuracy of only 61% (P=0.382), which was 

marginally above the randomized data set with no predictive value (54%). 

Considering that nanoscale proximity between EGFR molecules is a prerequisite for EGFR 

downstream signaling,38,39 our data appeared to be counter-intuitive. To find a possible 

explanation why trimers and multimers with average intra-cluster distances d>50nm are more 

predictive than dimers, trimers and multimers with average intra-cluster distances d≤50nm we 

investigated the intracellular trafficking behavior of the EGFR sub-populations of interest by 

direct visualization of their sub-cellular localization via TEM.  

 
Top predictive EGFR sub-populations localize predominantly on the limiting membrane of 

MVBs. To understand the relationship between the number of EGFRs per cluster N, the average 

intra-cluster distance d and the BLC weighting of the super-resolution microscopy data, we 

quantified the spatial distribution of clusters of N=2, N=3 and N>3 EGFR receptors and 

correlated it to their location within endosomes as determined by TEM. TEM allowed us to 

acquire images of sub-cellular structures and visualize the partitioning of individual and 

clustered EGFRs between the limiting membranes of MVBs (Fig. S6) and ILVs within the MVB 
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lumen (Fig. 5A). The super-resolution approach analyses all EGFR regardless of position in the 

cell while the requirement for ultra-high magnification to visualize gold by TEM prevents 

parallel whole-cell analysis. We therefore only analyzed endocytosed EGFR gold particles 

(present on small endocytic vesicles and MVBs with one or more ILVs), which also minimized 

the possibility of analyzing EGFR that had not bound ligand. EGFR clusters were defined by all 

gold labeled antibody-conjugated receptors with separation distances less than 22nm between 

adjacent nanogold particles. The cut-off was empirically determined to sensibly assign particles 

to a cluster as visualized in the TEM images. After 30 minutes at 37˚C the majority of N≥3 

multimers with larger intra-cluster distances displayed a tendency to localize on the limiting 

membrane of MVBs (Fig. S6) whilst many of the more compact clusters were sequestered on 

ILVs within the MVB lumen (Fig. 5B). The mean of the average size clusters with N≥3 located 

on the limiting membrane was significantly larger than that of clusters located on ILVs 

(P=0.0247, unpaired two-tailed t-test with Welch’s correction). This is a good fit with our model 

showing that EGFR trimer and multimer subpopulations with large intra-cluster distances 

(N>=3, d>50nm) are top predictors of MAPK phosphorylation.  

We found the most predictive EGFR subpopulation to be N≥3 clusters with average sizes larger 

than 50nm (P=0.0465). This first appeared counter-intuitive considering EGFR signaling is 

initiated upon ligand binding to the receptor followed by its dimerization/multimerization. 

Importantly, TEM experiments allowed us to reveal the sub-cellular organization of the various 

subpopulations. While TEM does not have the quantitative statistical power of the super-

resolution approach, it reveals the suborganellar EGFR distribution. TEM suggests a possible 

explanation for the predictive power of larger clusters (N≥3, d>50nm) compared with smaller 

clusters. The predictive large clusters were mainly located on the limiting membrane of 
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endocytic vesicles and multivesicular bodies where they play an active role in signal 

transduction. In contrast, many dimers and densely packed EGFR multimers (N≥3, d≤50nm) 

were located on ILVs and thus, no longer contributed to the overall EGFR signaling response 

because of their physical separation from the vast majority of the MAPK pool, which resides in 

the cytosol.  

The significance of the EGFR ≥3 multimers on the limiting membrane in triggering the MAPK 

signaling output may be explained by virtue of the associated Shc/Grb2/SOS/RAS/RAF/MEK/ 

MAPK complexes as we previously postulated through models.11 Some corroborative evidence 

for this has previously been obtained using image correlation spectroscopy and Foerster 

resonance energy transfer imaging. This approach showed in EGF-stimulated BaF/3 cells that 

were stably transfected with Grb2 (Grb2-mRFP) and EGFR (EGFR-eGFP), nanometer-scale 

association of Grb2-mRFP with EGFR-eGFP multimers, which contained, on average, 4 ± 1 

copies of EGFR-eGFP.44 Many differences exist between this observation and our current work. 

These include differences in cell types, overexpressed 45 vs. endogenous receptors (our study). 

Importantly, both report on a similar stoichiometry of the EGFR multimers that signal most 

efficiently in cells.  

The spatial organization of cell surface receptors on variable length scales (from molecules to 

micrometers) plays an important role in cell signaling.45 These cell-to-cell differences can 

provide a mechanism to control protein interactions and thus modulate signal transduction 

efficiency. Here, we were able to relate the spatial organization of the EGFR receptors to 

signaling dynamics and show that large EGFR trimers are the most predictive subpopulation for 

MAPK phosphorylation output. Our results strengthen the hypothesis that supramolecular 

receptor organization and spatial compartmentalization play a decisive role in signal 
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transduction, thereby influencing cell fate and function. Our findings further reveal EGFR 

trimers and their intra-cluster distances to play a role as a marker of MAPK phosphorylation. 

Pending further validation in more complex samples such as cell mixtures and tissues, this 

finding has potential applications beyond mechanistic signal transduction studies. A better 

understanding of the role of differentially located EGFR multimers (limiting membrane vs. ILV), 

e.g. by further dissecting the N & d information of our reported ILV-located EGFR in the context 

of chemotherapy resistance,46 may have potential value in future clinical applications. 
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CONCLUSION 

To better understand how signals are integrated and transmitted through signaling networks, we 

provide a framework for using super-resolution microscopy to access detailed spatial information 

about specific cellular molecules, and how to use it, in combination with mathematical modeling, 

to predict cellular outcomes. As a paradigm, we focused on how the spatial organization of the 

EGFR oligomeric network specifies the output signal through to MAPK phosphorylation in 

genetically identical cells. Ensemble behaviors of a population of cells may not reveal silent 

features of cell signaling. On the other hand, cell-to-cell differences are always present in any 

cell population and may or may not serve a biological function or contain meaningful 

information. Super-resolution imaging has been previously combined with TEM,13 but we report 

here an integrated cell-by-cell approach between the two imaging techniques to extract detailed 

spatial information on EGFR distribution. Assembly of EGFRs into homodimers and small size 

multimers occurs on spatial scales in between those probed by FRET (<10nm) and diffraction-

limited microscopy (>200nm). Our method, with a resolution of 15nm, is an excellent approach 

for studying receptor multimerization at this spatial scale.  

Our approach was to analyze and interpret heterogeneity in cellular pMAPK levels by looking at 

the individual cell behavior and correlating it to the detailed spatial organization of super-

resolved EGFR clusters. Our finding is that the number of EGFR molecules per cluster N and the 

average EGFR intra-cluster distance d are highly informative for the prediction of the EGF-

driven pMAPK output. N alone, d alone, and N and d combined were alternatively used as input 

parameters for a BLC to model, train and validate the technique resulting in prediction 

accuracies for MAPK phosphorylation of 65% (P=0.090), 46% (P=0.733) and 85% (P<0.001), 

respectively. A randomized data set of no predictive value yielded an accuracy of 54%, 
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demonstrating a 31% gain in accuracy if the N and d information is combined. The intra-cluster 

distance information is crucial in this prediction as it improves accuracy from 65% (P=0.090; 

with only EGFR numbers regarded) to 85% (P<0.001). We and others have previously applied 

super-resolution imaging to visualize EGFR clusters.20,21,27 Here we report using super-resolved 

cluster parameters to accurately predict the individual cells’ MAPK phosphorylation levels. This 

approach of combining advanced imaging with mathematical modeling to understand systems 

level integration can be extended to improve our understanding of how many similar receptor 

tyrosine kinases function in various types of cancer. 
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METHODS 

Reagents. 565nm Streptavidin-coated quantum dots (QD) and biotinylated EGF (Life 

Technologies). Mouse anti-phospho p42/44 MAPK (clone MAPK-YT) antibody (Sigma). Mouse 

anti-phospho p42/44-ERK1/2 and rabbit anti total-ERK1/2 antibodies (Cell Signaling 

Technologies). Mouse monoclonal anti-EGFR antibody clone F4 binding to the sequence 

DVVDADADEYLIPQ, which corresponds to EGFR amino acid residues 985-996, was obtained 

from the monoclonal antibody facility at Cancer Research UK. Donkey anti-mouse secondary 

antibodies conjugated to either DyLight594 or Cy2 (Jackson Immuno Research) and goat anti-

mouse-HRP and goat anti-rabbit-HRP secondary antibodies (Dako). Unconjugated EGF 

(Peprotech). SpheroTM polystyrene beads (average diameter 1.23µm, Spherotech). Mowiol 

(Polysciences). All standard chemicals (Sigma-Aldrich or VWR).  

Cell treatments and sample preparation for super-resolution microscopy. 30,000 triple-

negative HCC1143 (ATCC) cells/cm2 were seeded in complete 10% FBS-containing growth 

medium (RPMI 1640 supplemented with 4.5g/L glucose, 25mM L-glutamine and 100IU 

penicillin/streptomycin) onto sterile acid-treated glass coverslips (20mm diameter, glass 

thickness No.1.5; Metzler). On the day of the experiment, cells were washed twice with serum-

free growth medium and then treated with 10nM pre-formed EGF-biotin:streptavidin-QD565 

(EBSQ) complexes in serum-free growth medium at either 4°C or 37°C for the indicated times. 

EBSQ complexes were formed by mixing equimolar amounts of pre-washed streptavidin-QD565 

with biotinylated EGF (both from Life Technologies). A dilute solution of biotinylated EGF 

(200nM) was slowly pipetted using a Hamilton syringe (over minutes) into a more concentrated 

solution of streptavidin-QD565 (1µM) while continuously stirring. The mixture was allowed to 

react for 30min on ice. The equimolar reaction was carried out at a biotin:streptavidin ratio of 
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1:16-20. Reaction mixtures were purified from potential free EGF using P30 size exclusion spin 

columns (Biorad). After treatment, cells were washed three times with ice-cold Tris-buffered 

saline (TBS; 25mM Tris/HCl, 150mM NaCl, pH=7.4) and fixed for 15min in 4% (w/v) freshly 

prepared paraformaldehyde (PFA) dissolved in TBS. Subsequently, cells were permeabilized 

with 0.4% (v/v) Triton X-100 in TBS, washed twice with TBS, and blocked with 1% (w/v) 

bovine serum albumin (BSA) in TBS for 20min at room temperature. Cells were then incubated 

with the indicated primary antibodies (in blocking solution, at 4°C for 16h), washed three times 

with TBS and then stained with the indicated secondary antibodies in blocking solution at room 

temperature for 45min. After two washing steps each with TBS and distilled water, samples were 

mounted in Mowiol (Polysciences) and left to air dry in the dark at room temperature overnight. 

To correct for stage drift, polystyrene beads (0.1% (w/v), average diameter 1.23µm, Spherotech) 

were added to the mounting medium as fiduciary markers. 

Confocal fluorescence microscopy. Confocal images were obtained using an upright Zeiss 

LSM 510 META confocal microscope, equipped with a blue 405 diode laser, an argon ion laser 

and a green HeNe 543nm laser using the recommended filter sets for imaging of Hoechst 33342, 

FITC/GFP, and TRITC/RFP. Images were taken with a Plan-Apochromat oil objective 63× 

NA=1.4 (Zeiss). Image processing was performed using the Fiji/ImageJ software.  

gSHRImp super-resolution imaging with QD blinking. Super-resolution images were 

acquired using gSHRImP mostly as previously reported.12,15 Here, specifically, intrinsic blinking 

of quantum dots instead of photobleaching of organic dyes was employed to achieve super-

resolution. We used backward subtraction of the image frames to find single blinking events of 

individual QDs and stochastically resolve their localizations with nanometer accuracy. Drift 

correction (Fig. S3) was performed using bright-field scattering images of the non-fluorescent 
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beads acquired on a distinct CCD camera (CV-A55 IR E, JAI Ltd.) synchronized to the 

fluorescence imaging CCD (iXon+, Andor) for the entire duration of the measurement. Images 

were acquired at a rate of 33 frames/s. Typically, we imaged areas with a minimum of three 

fluorescent beads in the field of view and plotted the calibration drift curve by averaging the 

beads displacement in the x and y direction, respectively. Trajectories were extracted by tracking 

the beads position at each frame using in-house written code running on the IDL platform 

version 8.4 (Exelis). All images were corrected for drift individually and super-resolution images 

were plotted using in-house written software as previously reported.15  

Sample preparation for transmission electron microscopy (TEM). 300,000 HCC1143 

cells/cm2 were seeded on 6-well Epon plates (Agar Scientific) in serum-containing growth 

medium. On the next day, cells were washed twice with serum-free growth medium before they 

were incubated with the anti-EGFR antibody directed against the extracellular EGFR domain 

(clone 108) that was conjugated to colloidal 10nm gold particles as previously described.47 

Optimum gold loading into the cells was observed for 30min incubation with 80nM EGF 

(Peprotech) present alongside the gold-conjugated EGFR antibody. Subsequently, cells were 

fixed by applying a mixture of 2% (w/v) PFA and 2% (v/v) glutaraldehyde in 0.1M cacodylate 

buffer for 30min. After washing twice with 0.1M cacodylate buffer, cells were treated with 1% 

tannic acid in cacodylate buffer and prepared for TEM as previously reported 48. Sections of 

70nm thickness were cut using a Leica EM UC microtome and imaged on a JEOL JEM 1010 

electron microscope.  

Cluster analysis of TEM data. EGFR cluster analysis was done using Fiji/ImageJ software with 

the Graph plugin.49 Gold particles were manually selected and the distance matrix between all 

the particles was calculated. Adjacent particles separated by less than 50nm between their 
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centroids were classified as connected components and assigned to the same cluster. The number 

of particles per cluster (NEM) and the average intra-cluster distance (dEM) were determined for a 

total of 10 cells and 702 clusters. The average intra-cluster distance was calculated as the average 

of all distances between all particles within the cluster.  

Bayesian Linear Classifier analysis. A Bayesian Linear Classifier (BLC) 43 was used to predict 

MAPK activation status on a cell-by-cell basis. Cells were assigned to a ‘high’ or ‘low’ binary 

class depending on MAPK phosphorylation (fluorescence intensity averaged over the entire cell). 

The fluorescence intensity was calculated from a single frame, right after the exposure to the 

excitation light and before any photobleaching could occur. The threshold for separating the two 

classes represented the halfway value between the medians of the EGF treated and untreated cell 

populations, and was determined to be 2396 a.u. A cell belonged to the ‘high’ class if its average 

fluorescence intensity per pixel was higher, and to the 'low' class if lower, than the threshold 

value. MAPK phosphorylation prediction was based on the various covariates derived from 

super-resolution imaging of EGFR clusters, i.e. proportions of clusters in each of the N-mer or N-

d subclasses. The BLC seeks an optimal linear relationship between the input parameters and the 

binary classes. The intra-cohort reproducibility of the BLC classification was estimated using 

Leave One Out (LOO) Cross Validation. One sample is set aside for validation and the 

remaining samples are used for training the BLC. The cells were randomly separated into a 

training set and a validation set (see Methods); the training set was used to train the BLC, which 

subsequently was used for predictions using the validation set. The BLC was first used with a 

complete set of input variables, then the least informative covariate was removed (the one with 

the smallest weighting) and a new BLC was trained and used for prediction. Once trained, the 

model was used to predict which class the omitted sample belonged to. This was repeated until 
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each sample in the cohort had been used for validation. The training success was defined as the 

(mean) fraction of cells correctly classified after training and the validation success was the 

fraction of validation set cells that were correctly predicted. The BLC assigned weights to each 

of the input parameters. These indicate the relative strength of each parameter as a reporter of 

EGFR signaling to MAPK. The weights are determined by computing the maximum a posteriori 

(MAP) solution of the BLC. To obtain 95% Credible Intervals (CI) we approximated the 

posterior density with a multivariate Gaussian density by evaluating the curvature matrix at the 

MAP solution. By making predictions on a validation dataset we tested the reproducibility of the 

inferred weights. The high validation performance indicates that the inferred weights are genuine 

(as opposed to statistical flukes). Beginning with all of the covariates, the covariate with the 

smallest absolute value weight (averaged over training and validation runs) was eliminated and 

the entire procedure was repeated until only a single covariate remained. Under the null 

hypothesis that there is no association between the covariates and high/low intensity status we 

estimated a P value using a permutation test. The covariates were randomly permuted 1000 times 

and the maximum prediction accuracy was recorded each time. A P value was obtained based on 

the comparison of the observed predictive accuracy with a randomized data set of no predictive 

value (that yielded a prediction accuracy of 54%). 
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SUPPORTING INFORMATION AVAILABLE 

This material is available free of charge via the Internet at http://pubs.acs.org. We provide 

supporting information including: (A) the analysis of population-based MAPK phosphorylation 

in response to EGF; (B) the validation of the EBSQ complex as compared to EGF; (C) details 

about super-resolution achieved by QD blinking; (D) a size estimation of the EBSQ complex; (E) 

that intra-cluster distances d in isolation are not predictive for MAPK phosphorylation; (F) the 

BLC-based pMAPK prediction for both individual experimental cohorts; and (G) a 

representative transmission electron microscopy image showing EGFR clusters at the limiting 

membrane of multivesicular bodies.  
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Figure 1. Cell-to-cell heterogeneity of HCC1143 breast cancer cells in their MAPK signaling 
response subsequent to EGF stimulation. | Each histogram was built from single-cell phospho-MAPK 

intensity levels (arbitrary units (a.u.)) from 3 independent experiments (9 confocal tiles per image, N≥350 

cells per condition for each experiment). The Full width half maximum (FWHM) of the anti phospho-MAPK 
intensity is a measure of cellular heterogeneity. Typical micrographs are shown.  
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Figure 2. Super-resolution microscopy of EGFR clusters. | EBSQ bound to EGFR was imaged and 
super-resolved by gSHRImP based on QD blinking. A receptor dimer (A-C) or trimer (D-F) appears as a 

blurry spot expanding about 4-5 actual camera pixels (100nm/pixel) in diameter when imaged by 
diffraction-limited microscopy (purple). For visual guidance, we show the mean fluorescence intensity levels 
corresponding to the individual QDs by red dotted lines in QD blinking traces (A or D). Both traces have the 
background subtracted. The white overlay images in (B) and (E) represent the corresponding Gaussian 

point-spread-functions (PSFs) as determined via the gSHRImP algorithm. Please note that gSHRImP PSFs 
are not intensity-normalized. The final super-resolved images are generated by determining the centers of 

the single-molecule PSFs and are shown in zoomed-in micrographs in (C) for the dimer (EGFR molecules are 
24nm apart) and (F) for the trimer (EGFR distances are 92nm, 107nm and 116nm, respectively). Yellow 
circles indicate individual EGFR molecule positions with the circle centers positioned at the calculated 

centroid positions of each EGFR molecule. Scale bars are 50nm.  
Fig. 2  
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Figure 3. Cell-by-cell analysis of EGFR clusters. | (A) Number of resolved EGFR clusters under different 
treatment conditions. Clusters were categorized into EGFR monomers, dimers, trimers and oligomers as 

determined by counting the number of receptors per resolved cluster. Oligomers formed of more than 5-6 
receptors could not always be resolved. (B) Trimers and fully resolvable multimers (i.e. clusters with N=[4-

6]; from here onwards referred to as "N>3" multimers) were analyzed for their intra-cluster distances 
between EGFR molecules. We categorized them as either d≤50nm or d>50nm. The relative numbers in 
those cluster categories change upon treatment. (C) Binary classification of each HCC1143 cell in each 

treatment condition into a "low" and "high" pMAPK intensity class. Data shown in all panels were obtained 

from 46 analyzed cells and 2164 clusters acquired in 2 independent experiments. The classes are 
significantly different; P<0.0001 (unpaired two-tailed t-test with Welch’s correction assuming unequal 

standard deviation).  
Fig. 3  
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Figure 4. BLC-based prediction of cellular MAPK phosphorylation. | Prediction uses the number of 
EGFR molecules per cluster N as the only input parameter (A-B) or both N and the intra-cluster distances d 

as input parameters (C-D). (A/C) BLC prediction performance of the training and validation sets as a 

function of the number of covariates used. (B/D) Graphical representation of the regression weights 
assigned to each covariate. The magnitude of each weight gives a measure of how informative each 

covariate is in predicting the class membership. A positive weight implies that large values of that covariate 
are associated with the 'high' class whereas a negative weight indicates that large values of that covariate 

are associated with the 'low' class. The weights are obtained by averaging over the weights obtained during 
leave-one-out cross-validation with all covariates. The 95% confidence intervals of the regression weights 

are plotted. The Bayesian analysis has been performed on imaging data acquired in two independent 
experiments.  
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Figure 5. TEM analysis of EGFR clusters. | (A) Direct visualization and subcellular localization of EGF-
induced EGFR cluster formation in HCC1143 cells. Black arrows point towards the limiting membrane of the 
MVB while white arrows point towards ILVs; scale bar is 100nm. (B) Partitioning between MVB limiting 

membranes or ILV membranes for dimers, trimers and multimers across all measured average intra-cluster 
distances; a box and whisker plot is shown with whiskers indicating minimum/maximum values. Localization 
on the limiting membrane of MVB becomes dominant with increasing average intra-cluster distance and 

number of receptors per cluster. Localization on the limiting membrane was found significantly different than 
localization on ILVs for trimers (P=0.0247) using unpaired two-tailed t-test with Welch’s correction assuming 

unequal standard deviation.  
Fig. 5  
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