67 research outputs found

    International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) - the propagation of knowledge in ultrasound for the improvement of OB/GYN care worldwide: experience of basic ultrasound training in Oman.

    Get PDF
    BACKGROUND: The aim of this study is to evaluate effectiveness of a new ISUOG (International Society of Ultrasound in Obstetrics and Gynecology) Outreach Teaching and Training Program delivered in Muscat, Oman. METHODS: Quantitative assessments to evaluate knowledge and practical skills were administered before and after an ultrasound course for sonologists attending the ISUOG Outreach Course, which took place in November, 2017, in Oman. Trainees were selected from each region of the country following a national vetting process conducted by the Oman Ministry of Health. Twenty-eight of the participants were included in the analysis. Pre- and post-training practical and theoretical scores were evaluated and compared. RESULTS: Participants achieved statistically significant improvements, on average by 47% (p < 0.001), in both theoretical knowledge and practical skills. Specifically, the mean score in the theoretical knowledge test significantly increased from 55.6% (± 14.0%) to 81.6% (± 8.2%), while in the practical test, the mean score increased from 44.6% (± 19.5%) to 65.7% (± 23.0%) (p < 0.001). Performance was improved post-course among 27/28 participants (96.4%) in the theoretical test (range: 14 to 200%) and among 24/28 (85.7%) trainees in the practical skills test (range: 5 to 217%). CONCLUSION: Application of the ISUOG Basic Training Curriculum and Outreach Teaching and Training Course improved the theoretical knowledge and practical skills of local health personnel. Long-term re-evaluation is, however, considered imperative to ascertain and ensure knowledge retention

    Characterization of Fluorescent Eye Markers for Mammalian Transgenic Studies

    Get PDF
    Genotyping mice by DNA based methods is both laborious and costly. As an alternative, we systematically examined fluorescent proteins expressed in the lens as transgenic markers for mice. A set of eye markers has been selected such that double and triple transgenic animals can be visually identified and that fluorescence intensity in the eyes can be used to distinguish heterozygous from homozygous mice. Taken together, these eye markers dramatically reduce the time and cost of genotyping transgenics and empower analysis of genetic interaction

    An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae

    Get PDF
    Background: Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings: We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance: YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org.This work was supported by grants from the N.S.F. (IIS-0325116, EIA-0219061), N.I.H. (GM06779-01,GM076536-01), Welch (F-1515), and a Packard Fellowship (EMM). These agencies were not involved in the design and conduct of the study, in the collection, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript.Cellular and Molecular Biolog

    Multiple Data Analyses and Statistical Approaches for Analyzing Data from Metagenomic Studies and Clinical Trials

    Get PDF
    Metagenomics, also known as environmental genomics, is the study of the genomic content of a sample of organisms (microbes) obtained from a common habitat. Metagenomics and other “omics” disciplines have captured the attention of researchers for several decades. The effect of microbes in our body is a relevant concern for health studies. There are plenty of studies using metagenomics which examine microorganisms that inhabit niches in the human body, sometimes causing disease, and are often correlated with multiple treatment conditions. No matter from which environment it comes, the analyses are often aimed at determining either the presence or absence of specific species of interest in a given metagenome or comparing the biological diversity and the functional activity of a wider range of microorganisms within their communities. The importance increases for comparison within different environments such as multiple patients with different conditions, multiple drugs, and multiple time points of same treatment or same patient. Thus, no matter how many hypotheses we have, we need a good understanding of genomics, bioinformatics, and statistics to work together to analyze and interpret these datasets in a meaningful way. This chapter provides an overview of different data analyses and statistical approaches (with example scenarios) to analyze metagenomics samples from different medical projects or clinical trials

    Whole-chromosome hitchhiking driven by a male-killing endosymbiont.

    Get PDF
    Neo-sex chromosomes are found in many taxa, but the forces driving their emergence and spread are poorly understood. The female-specific neo-W chromosome of the African monarch (or queen) butterfly Danaus chrysippus presents an intriguing case study because it is restricted to a single 'contact zone' population, involves a putative colour patterning supergene, and co-occurs with infection by the male-killing endosymbiont Spiroplasma. We investigated the origin and evolution of this system using whole genome sequencing. We first identify the 'BC supergene', a broad region of suppressed recombination across nearly half a chromosome, which links two colour patterning loci. Association analysis suggests that the genes yellow and arrow in this region control the forewing colour pattern differences between D. chrysippus subspecies. We then show that the same chromosome has recently formed a neo-W that has spread through the contact zone within approximately 2,200 years. We also assembled the genome of the male-killing Spiroplasma, and find that it shows perfect genealogical congruence with the neo-W, suggesting that the neo-W has hitchhiked to high frequency as the male-killer has spread through the population. The complete absence of female crossing-over in the Lepidoptera causes whole-chromosome hitchhiking of a single neo-W haplotype, carrying a single allele of the BC supergene and dragging multiple non-synonymous mutations to high frequency. This has created a population of infected females that all carry the same recessive colour patterning allele, making the phenotypes of each successive generation highly dependent on uninfected male immigrants. Our findings show how hitchhiking can occur between the physically unlinked genomes of host and endosymbiont, with dramatic consequences

    Achievements and new knowledge unraveled by metagenomic approaches

    Get PDF
    Metagenomics has paved the way for cultivation-independent assessment and exploitation of microbial communities present in complex ecosystems. In recent years, significant progress has been made in this research area. A major breakthrough was the improvement and development of high-throughput next-generation sequencing technologies. The application of these technologies resulted in the generation of large datasets derived from various environments such as soil and ocean water. The analyses of these datasets opened a window into the enormous phylogenetic and metabolic diversity of microbial communities living in a variety of ecosystems. In this way, structure, functions, and interactions of microbial communities were elucidated. Metagenomics has proven to be a powerful tool for the recovery of novel biomolecules. In most cases, functional metagenomics comprising construction and screening of complex metagenomic DNA libraries has been applied to isolate new enzymes and drugs of industrial importance. For this purpose, several novel and improved screening strategies that allow efficient screening of large collections of clones harboring metagenomes have been introduced

    Contribution of Exogenous Genetic Elements to the Group A Streptococcus Metagenome

    Get PDF
    Variation in gene content among strains of a bacterial species contributes to biomedically relevant differences in phenotypes such as virulence and antimicrobial resistance. Group A Streptococcus (GAS) causes a diverse array of human infections and sequelae, and exhibits a complex pathogenic behavior. To enhance our understanding of genotype-phenotype relationships in this important pathogen, we determined the complete genome sequences of four GAS strains expressing M protein serotypes (M2, M4, and 2 M12) that commonly cause noninvasive and invasive infections. These sequences were compared with eight previously determined GAS genomes and regions of variably present gene content were assessed. Consistent with the previously determined genomes, each of the new genomes is ∼1.9 Mb in size, with ∼10% of the gene content of each encoded on variably present exogenous genetic elements. Like the other GAS genomes, these four genomes are polylysogenic and prophage encode the majority of the variably present gene content of each. In contrast to most of the previously determined genomes, multiple exogenous integrated conjugative elements (ICEs) with characteristics of conjugative transposons and plasmids are present in these new genomes. Cumulatively, 242 new GAS metagenome genes were identified that were not present in the previously sequenced genomes. Importantly, ICEs accounted for 41% of the new GAS metagenome gene content identified in these four genomes. Two large ICEs, designated 2096-RD.2 (63 kb) and 10750-RD.2 (49 kb), have multiple genes encoding resistance to antimicrobial agents, including tetracycline and erythromycin, respectively. Also resident on these ICEs are three genes encoding inferred extracellular proteins of unknown function, including a predicted cell surface protein that is only present in the genome of the serotype M12 strain cultured from a patient with acute poststreptococcal glomerulonephritis. The data provide new information about the GAS metagenome and will assist studies of pathogenesis, antimicrobial resistance, and population genomics

    The Gaia -ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars

    Get PDF
    The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types of objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. We aim at tracing the radial distributions of abundances of elements produced through different nucleosynthetic channels -the alpha-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by using the Gaia-ESO idr4 results of open clusters and young field stars. From the UVES spectra of member stars, we determine the average composition of clusters with ages >0.1 Gyr. We derive statistical ages and distances of field stars. We trace the abundance gradients using the cluster and field populations and we compare them with a chemo-dynamical Galactic evolutionary model. Results. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5 kpc<RGC <7 kpc), with their differences, that were usually poorly explained by chemical evolution models. Often, oxygen and magnesium are considered as equivalent in tracing alpha-element abundances and in deducing, e.g., the formation time-scales of different Galactic stellar populations. In addition, often [alpha/Fe] is computed combining several alpha-elements. Our results indicate, as expected, a complex and diverse nucleosynthesis of the various alpha-elements, in particular in the high metallicity regimes, pointing towards a different origin of these elements and highlighting the risk of considering them as a single class with common features.This work was partially supported by the Gaia Research for European Astronomy Training (GREAT-ITN) Marie Curie network, funded through the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement n. 264895. This work was partly supported support through the European Research Council grant 320360: The Gaia-ESO Milky Way Survey G.T. and A.D. acknowledge support by the Research Council of Lithuania (MIP- 082 / 2015). This research has been partially supported by the National Institute for Astrophysics (INAF) through the grant PRIN-2014 ("Transient Universe, unveiling new types of stellar explosions with PESSTO"). F.J.E. acknowledges financial support from the Spacetec-CM project (S2013/ICE-2822). S.F. and T.B. are supported by the project grant "The New Milky Way" from the Knut and Alice Wallenberg Foundation. Support for SD was provided by the Chile’s Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS

    Metagenomics: DNA sequencing of environmental samples

    Full text link
    While genomics has classically focused on pure, easy-to-obtain samples, such as microbes that grow readily in culture or large animals and plants, these organisms represent but a fraction of the living or once living organisms of interest. Many species are difficult to study in isolation, because they fail to grow in laboratory culture, depend on other organisms for critical processes, or have become extinct. DNA sequence-based methods circumvent these obstacles, as DNA can be directly isolated from live or dead cells in a variety of contexts, and have led to the emergence of a new field referred to as metagenomics

    Life-threatening infections in children in Europe (the EUCLIDS Project): a prospective cohort study

    Get PDF
    Background: Sepsis and severe focal infections represent a substantial disease burden in children admitted to hospital. We aimed to understand the burden of disease and outcomes in children with life-threatening bacterial infections in Europe. Methods: The European Union Childhood Life-threatening Infectious Disease Study (EUCLIDS) was a prospective, multicentre, cohort study done in six countries in Europe. Patients aged 1 month to 18 years with sepsis (or suspected sepsis) or severe focal infections, admitted to 98 participating hospitals in the UK, Austria, Germany, Lithuania, Spain, and the Netherlands were prospectively recruited between July 1, 2012, and Dec 31, 2015. To assess disease burden and outcomes, we collected demographic and clinical data using a secured web-based platform and obtained microbiological data using locally available clinical diagnostic procedures. Findings: 2844 patients were recruited and included in the analysis. 1512 (53·2%) of 2841 patients were male and median age was 39·1 months (IQR 12·4–93·9). 1229 (43·2%) patients had sepsis and 1615 (56·8%) had severe focal infections. Patients diagnosed with sepsis had a median age of 27·6 months (IQR 9·0–80·2), whereas those diagnosed with severe focal infections had a median age of 46·5 months (15·8–100·4; p<0·0001). Of 2844 patients in the entire cohort, the main clinical syndromes were pneumonia (511 [18·0%] patients), CNS infection (469 [16·5%]), and skin and soft tissue infection (247 [8·7%]). The causal microorganism was identified in 1359 (47·8%) children, with the most prevalent ones being Neisseria meningitidis (in 259 [9·1%] patients), followed by Staphylococcus aureus (in 222 [7·8%]), Streptococcus pneumoniae (in 219 [7·7%]), and group A streptococcus (in 162 [5·7%]). 1070 (37·6%) patients required admission to a paediatric intensive care unit. Of 2469 patients with outcome data, 57 (2·2%) deaths occurred: seven were in patients with severe focal infections and 50 in those with sepsis. Interpretation: Mortality in children admitted to hospital for sepsis or severe focal infections is low in Europe. The disease burden is mainly in children younger than 5 years and is largely due to vaccine-preventable meningococcal and pneumococcal infections. Despite the availability and application of clinical procedures for microbiological diagnosis, the causative organism remained unidentified in approximately 50% of patients
    corecore