87 research outputs found

    KIC 4768731: a bright long-period roAp star in theKeplerfield

    Get PDF
    We report the identification of 61.45 d−1 (711.2 μHz) oscillations, with amplitudes of 62.6 μmag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V = 9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has previously been found to exhibit rotational modulation with a period of 5.21 d. Fourier analysis reveals a simple dipole pulsator with an amplitude that has remained stable over a 4-yr time span, but with a frequency that is variable. Analysis of high-resolution spectra yields stellar parameters of Teff = 8100 ± 200 K, log g = 4.0 ± 0.2, [Fe/H] = +0.31 ± 0.24 and v sin i = 14.8 ± 1.6 km s−1. Line profile variations caused by rotation are also evident. Lines of Sr, Cr, Eu, Mg and Si are strongest when the star is brightest, while Y and Ba vary in antiphase with the other elements. The abundances of rare earth elements are only modestly enhanced compared to other roAp stars of similar Teff and log g. Radial velocities in the literature suggest a significant change over the past 30 yr, but the radial velocities presented here show no significant change over a period of 4 yr

    Pulsation versus metallicism in Am stars as revealed by LAMOST and WASP

    Get PDF
    The WASP project is funded and operated by Queen’s University Belfast, the Universities of Keele, St Andrews and Leicester, the Open University, the Isaac Newton Group, the Instituto de Astrofisica de Canarias, the South African Astronomical Observatory and by the UK Science and Technology Facilities Council (STFC). Funding for the Stellar Astrophysics Centre was provided by the Danish National Research Foundation (grant no. DNRF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement no. 267864). DWK is supported by the STFC.DLH acknowledges support from the STFC via grant number ST/M000877/1. SJM was supported by the Australian Research Council.We present the results of a study of a large sample of A and Am stars with spectral types from Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and light curves from Wide Area Search for Planets (WASP). We find that, unlike normal A stars, δ Sct pulsations in Am stars are mostly confined to the effective temperature range 6900 < Teff < 7600 K. We find evidence that the incidence of pulsations in Am stars decreases with increasing metallicism (degree of chemical peculiarity). The maximum amplitude of the pulsations in Am stars does not appear to vary significantly with metallicism. The amplitude distributions of the principal pulsation frequencies for both A and Am stars appear very similar and agree with results obtained from Kepler photometry. We present evidence that suggests turbulent pressure is the main driving mechanism in pulsating Am stars, rather than the κ-mechanism, which is expected to be suppressed by gravitational settling in these stars.Publisher PDFPeer reviewe

    Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars

    Get PDF
    The Kepler space mission provided near-continuous and high-precision photometry of about 207 000 stars, which can be used for asteroseismology. However, for successful seismic modeling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe i, and Fe ii lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and λ Boo types. The distribution of the projected rotational velocity, vsin i, is typical for A and F stars and ranges from 8 to about 280 km s−1, with a mean of 134 km s−1

    Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars

    Get PDF
    The Kepler space mission provided near-continuous and high-precision photometry of about 207000 stars, which can be used for asteroseismology. However, for successful seismic modeling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe i, and Fe ii lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and λBoo types. The distribution of the projected rotational velocity, vsin i, is typical for A and F stars and ranges from 8 to about 280kms−1, with a mean of 134kms−

    KIC 4768731: a bright long-period roAp star in the Kepler field

    Get PDF
    We report the identification of 61.45 d−1 (711.2 μHz) oscillations, with amplitudes of 62.6 μmag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V = 9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has previously been found to exhibit rotational modulation with a period of 5.21 d. Fourier analysis reveals a simple dipole pulsator with an amplitude that has remained stable over a 4-yr time span, but with a frequency that is variable. Analysis of high-resolution spectra yields stellar parameters of Teff = 8100 ± 200 K, log g = 4.0 ± 0.2, [Fe/H] = +0.31 ± 0.24 and v sin i = 14.8 ± 1.6 km s−1. Line profile variations caused by rotation are also evident. Lines of Sr, Cr, Eu, Mg and Si are strongest when the star is brightest, while Y and Ba vary in antiphase with the other elements. The abundances of rare earth elements are only modestly enhanced compared to other roAp stars of similar Teff and log g. Radial velocities in the literature suggest a significant change over the past 30 yr, but the radial velocities presented here show no significant change over a period of 4 yr

    Pulsation versus metallicism in Am stars as revealed by LAMOST and WASP

    Get PDF
    We present the results of a study of a large sample of A and Am stars with spectral types from Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and light curves from Wide Area Search for Planets (WASP). We find that, unlike normal A stars, δ Sct pulsations in Am stars are mostly confined to the effective temperature range 6900 < Teff < 7600 K.We find evidence that the incidence of pulsations inAmstars decreases with increasingmetallicism (degree of chemical peculiarity). The maximum amplitude of the pulsations in Am stars does not appear to vary significantly with metallicism. The amplitude distributions of the principal pulsation frequencies for both A and Am stars appear very similar and agree with results obtained from Kepler photometry. We present evidence that suggests turbulent pressure is the main driving mechanism in pulsating Am stars, rather than the κ-mechanism, which is expected to be suppressed by gravitational settling in these stars

    <em>TESS</em> Cycle 2 observations of roAp stars with 2-min cadence data

    Get PDF
    \ua9 The Author(s) 2023.We present the results of a systematic search of the Transiting Exoplanet Survey Satellite (TESS) 2-min cadence data for new rapidly oscillating Ap (roAp) stars observed during the Cycle 2 phase of its mission. We find seven new roAp stars previously unreported as such and present the analysis of a further 25 roAp stars that are already known. Three of the new stars show multiperiodic pulsations, while all new members are rotationally variable stars, leading to almost 70 per cent (22) of the roAp stars presented being α2 CVn-type variable stars. We show that targeted observations of known chemically peculiar stars are likely to overlook many new roAp stars, and demonstrate that multiepoch observations are necessary to see pulsational behaviour changes. We find a lack of roAp stars close to the blue edge of the theoretical roAp instability strip, and reaffirm that mode instability is observed more frequently with precise, space-based observations. In addition to the Cycle 2 observations, we analyse TESS data for all-known roAp stars. This amounts to 18 further roAp stars observed by TESS. Finally, we list six known roAp stars that TESS is yet to observe. We deduce that the incidence of roAp stars amongst the Ap star population is just 5.5 per cent, raising fundamental questions about the conditions required to excite pulsations in Ap stars. This work, coupled with our previous work on roAp stars in Cycle 1 observations, presents the most comprehensive, homogeneous study of the roAp stars in the TESS nominal mission, with a collection of 112 confirmed roAp stars in total

    Gastrodin Inhibits Expression of Inducible NO Synthase, Cyclooxygenase-2 and Proinflammatory Cytokines in Cultured LPS-Stimulated Microglia via MAPK Pathways

    Get PDF
    Microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory enzymes and proinflammatory cytokines. The phenolic glucoside gastrodin, a main constituent of a Chinese herbal medicine, has been known to display anti-inflammatory properties. The current study investigates the potential mechanisms whereby gastrodin affects the expression of potentially pro-inflammatory proteins by cultured murine microglial BV-2 cells stimulated with lipopolysaccharide (LPS).BV-2 cells were pretreated with gastrodin (30, 40, and 60 µM) for 1 h and then stimulated with LPS (1 µg/ml) for another 4 h. The effects on proinflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and proinflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), are analysed by double-immunofluorescence labeling and RT-PCR assay. To reveal the mechanisms of action of gastrodin we investigated the involvement of mitogen-activated protein kinases (MAPKs) cascades and their downstream transcription factors, nuclear factor-κB (NF-κB) and cyclic AMP-responsive element (CRE)-binding protein (CREB). Gastrodin significantly reduced the LPS-induced protein and mRNA expression levels of iNOS, COX-2, TNF-α, IL-1β and NF-κB. LPS (1 µg/ml, 30 min)-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) and this was inhibited by pretreatment of BV-2 cells with different concentrations of gastrodin (30, 40, and 60 µM). In addition, gastrodin blocked LPS-induced phosphorylation of inhibitor κB-α (IκB-α) (and hence the activation of NF-κB) and of CREB, respectively.This study indicates that gastrodin significantly attenuate levels of neurotoxic proinflammatory mediators and proinflammatory cytokines by inhibition of the NF-κB signaling pathway and phosphorylation of MAPKs in LPS-stimulated microglial cells. Arising from the above, we suggest that gastrodin has a potential as an anti-inflammatory drug candidate in neurodegenerative diseases

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year
    • …
    corecore