90 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Nanoscale polarisation switching and leakage currents in (Ba<sub>0.955</sub>Ca<sub>0.045</sub>)(Zr<sub>0.17</sub>Ti<sub>0.83</sub>)O<sub>3</sub> epitaxial thin films

    No full text
    This paper investigates the crystal structure, ferroelectric, temperature-dependent leakage current conduction mechanism and the piezoresponse force microscopy (PFM) behaviours of (Ba0.955Ca0.045) (Zr0.17Ti0.83)O3–BZT–BCT (x=0.15) films at the vicinity of the morphotropic phase boundary (MPB) of the [(1  −  x) BaZr0.20Ti0.80O3–xBa0.70Ca0.30TiO3] (x=0.15) composition. Epitaxial BZT–BCT thin films were grown on conductive La0.5Sr0.5CoO3 (LSCO) layers coated onto MgO (1 0 0) single-crystal substrates by pulsed laser deposition (PLD). High resolution x-ray diffraction (HR-XRD) reciprocal space maps (RSMs) confirmed the epitaxy with in-plane tetragonal symmetry (c  &lt;  a), and Raman spectra also revealed a tetragonal perovskite crystalline lattice structure. Polarisation studies demonstrate that BZT–BCT films exhibit a high saturation polarisation of 148 µC cm−2 and a high recoverable (discharged) energy-storage density of 39.11 J cm−3 at 2.08 MV cm−1. Temperature-dependent P–E hysteresis loops resulted in a decrease in polarisation. Temperature-dependent leakage current behaviour was obtained and possible conduction mechanism is discussed. PPFM images revealed switchable ferroelectric piezoelectric contrasts after the application of a  ±9 V dc voltage on the conductive tip of the piezoresponse force microscope</p
    corecore