42 research outputs found

    Mooring line fatigue damage evaluation for floating marine energy converters: Field measurements and prediction

    Get PDF
    publication-status: Publishedtypes: ArticleThe vision of large-scale commercial arrays of floating marine energy converters (MECs) necessitates the robust, yet cost-effective engineering of devices. Given the continuous environmental loading, fatigue has been iden- tified as one of the key engineering challenges. In particular the mooring sys- tem which warrants the station-keeping of such devices is subject to highly cyclic, non-linear load conditions, mainly induced by the incident waves. To ensure the integrity of the mooring system the lifecycle fatigue spec- trum must be predicted in order to compare the expected fatigue damage against the design limits. The fatigue design of components is commonly as- sessed through numerical modelling of representative load cases. However, for new applications such as floating marine energy converters numerical models are often scantily validated. This paper describes an approach where load measurements from large- scale field trials at the South West Mooring Testing Facility (SWMTF) are used to calculate and predict the fatigue damage. The described procedure employs a Rainflow cycle analysis in conjunction with the Palmgren-Miner rule to estimate the accumulated damage for the deployment periods and individual sea states. This approach allows an accurate fatigue assessment and prediction of mooring lines at a design stage, where field trial load measurements and wave climate information of potential installation sites are available. The mooring design can thus be optimised regarding its fatigue life and costly safety factors can be reduced. The proposed method also assists in monitoring and assessing the fatigue life during deployment periods

    Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway

    Get PDF
    During early brain development, N-methyl-d-aspartate (NMDA) receptors are involved in cell migration, neuritogenesis, axon guidance and synapse formation, but the mechanisms which regulate NMDA receptor density and function remain unclear. The kynurenine pathway of tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at NMDA receptors and we have previously shown that inhibition of the pathway using the kynurenine-3-monoxygenase inhibitor Ro61-8048 in late gestation produces rapid changes in protein expression in the embryos and effects on synaptic transmission lasting until postnatal day 21 (P21). The present study sought to determine whether any of these effects are maintained into adulthood. After prenatal injections of Ro61-8048 the litter was allowed to develop to P60 when some offspring were euthanized and the brains removed for examination. Analysis of protein expression by Western blotting revealed significantly reduced expression of the GluN2A subunit (32%) and the morphogenetic protein sonic hedgehog (31%), with a 29% increase in the expression of doublecortin, a protein associated with neurogenesis. No changes were seen in mRNA abundance using quantitative real-time polymerase chain reaction. Neuronal excitability was normal in the CA1 region of hippocampal slices but paired-pulse stimulation revealed less inhibition at short interpulse intervals. The amount of long-term potentiation was decreased by 49% in treated pups and recovery after low-frequency stimulation was delayed. The results not only strengthen the view that basal, constitutive kynurenine metabolism is involved in normal brain development, but also show that changes induced prenatally can affect the brains of adult offspring and those changes are quite different from those seen previously at weaning (P21). Those changes may be mediated by altered expression of NMDAR subunits and sonic hedgehog

    Association of Sex with Neurobehavioral Markers of Executive Function in 2-Year-Olds at High and Low Likelihood of Autism

    Get PDF
    Importance: Children with autism and their siblings exhibit executive function (EF) deficits early in development, but associations between EF and biological sex or early brain alterations in this population are largely unexplored. Objective: To investigate the interaction of sex, autism likelihood group, and structural magnetic resonance imaging alterations on EF in 2-year-old children at high familial likelihood (HL) and low familial likelihood (LL) of autism, based on having an older sibling with autism or no family history of autism in first-degree relatives. Design, Setting, and Participants: This prospective cohort study assessed 165 toddlers at HL (n = 110) and LL (n = 55) of autism at 4 university-based research centers. Data were collected from January 1, 2007, to December 31, 2013, and analyzed between August 2021 and June 2022 as part of the Infant Brain Imaging Study. Main Outcomes and Measures: Direct assessments of EF and acquired structural magnetic resonance imaging were performed to determine frontal lobe, parietal lobe, and total cerebral brain volume. Results: A total of 165 toddlers (mean [SD] age, 24.61 [0.95] months; 90 [54%] male, 137 [83%] White) at HL for autism (n = 110; 17 diagnosed with ASD) and LL for autism (n = 55) were studied. The toddlers at HL for autism scored lower than the toddlers at LL for autism on EF tests regardless of sex (mean [SE] B = -8.77 [4.21]; 95% CI, -17.09 to -0.45; η2p= 0.03). With the exclusion of toddlers with autism, no group (HL vs LL) difference in EF was found in boys (mean [SE] difference, -7.18 [4.26]; 95% CI, 1.24-15.59), but EF was lower in HL girls than LL girls (mean [SE] difference, -9.75 [4.34]; 95% CI, -18.32 to -1.18). Brain-behavior associations were examined, controlling for overall cerebral volume and developmental level. Sex differences in EF-frontal (B [SE] = 16.51 [7.43]; 95% CI, 1.36-31.67; η2p= 0.14) and EF-parietal (B [SE] = 17.68 [6.99]; 95% CI, 3.43-31.94; η2p= 0.17) associations were found in the LL group but not the HL group (EF-frontal: B [SE] = -1.36 [3.87]; 95% CI, -9.07 to 6.35; η2p= 0.00; EF-parietal: B [SE] = -2.81 [4.09]; 95% CI, -10.96 to 5.34; η2p= 0.01). Autism likelihood group differences in EF-frontal (B [SE] = -9.93 [4.88]; 95% CI, -19.73 to -0.12; η2p= 0.08) and EF-parietal (B [SE] = -15.44 [5.18]; 95% CI, -25.86 to -5.02; η2p= 0.16) associations were found in girls not boys (EF-frontal: B [SE] = 6.51 [5.88]; 95% CI, -5.26 to 18.27; η2p= 0.02; EF-parietal: B [SE] = 4.18 [5.48]; 95% CI, -6.78 to 15.15; η2p= 0.01). Conclusions and Relevance: This cohort study of toddlers at HL and LL of autism suggests that there is an association between sex and EF and that brain-behavior associations in EF may be altered in children at HL of autism. Furthermore, EF deficits may aggregate in families, particularly in girls

    Anisotropic epitaxial ZnO/CdO core/shell heterostructure nanorods

    Get PDF
    10.1186/1556-276X-7-626Nanoscale Research Letters762

    A Correlated APT and TEM Approach to Understand Nanostructured Ferritic Alloys

    No full text

    Helium trapping in carbide precipitates in a tempered F82H ferritic–martensitic steel

    Get PDF
    The microstructural changes of a tempered F82H ferritic–martensitic steel following He implantation at 60 and 500 °C have been examined by transmission electron microscopy (TEM) and atom probe tomography (APT). After irradiation at 500 °C, numerous He bubbles were formed throughout the matrix, whereas after irradiation at 60 °C, no bubbles were seen to form in the matrix. In both irradiations, He bubbles were observed to have formed within large carbide precipitates, determined by APT compositional analysis to be M23C6. The observed preferential He bubble formation in carbides during low temperature He irradiation occurs as a result of the diffusing He being trapped in the carbide due to the strong He–C bond. As the He concentration increases in the carbide due to trapping, He bubbles are formed

    Energy dependence of He-ion-induced tungsten nanofuzz formation at non-normal incidence angles

    No full text
    We report measurements of He-ion-beam induced tungsten nanofuzz formation for normal and non-normal incidence angles in the energy range 218eV–10keV. At 218eV, the fuzz tendrils are fine and grow randomly away from the interface in the direction of the surface normal. Above 480eV, the fuzz tendrils become increasingly coarser, and their growth direction is in the direction of the incident beam. This change is attributed to the ion-induced displacement damage which becomes effective once the displacement damage threshold energy is exceeded, and produces additional near-surface trapping sites in those portions of the surface that are in direct line of sight of the incident beam which can nucleate He clusters and initiate bubble growth. Once the surface morphology roughens sufficiently for shadowing to occur, the subsequent fuzz growth occurs preferentially toward the incident ion beam. Molecular dynamics (MD) simulations were carried out to determine the displacement damage threshold energies in the near-surface region along the three major crystallographic directions. It was found that the tungsten bulk values are established within the first 2–4 atomic layers below the tungsten surface. SRIM simulations based on the MD energy thresholds indicate that vacancy damage production in the near-surface region quickly dominates over sputtering in near-surface lattice modification effects as the energy above the damage threshold increases

    Effects of helium on irradiation response of reduced-activation ferritic-martensitic steels: Using nickel isotopes to simulate fusion neutron response

    No full text
    Understanding the effects of helium on microstructures and mechanical properties of reduced-activation ferritic-martensitic steels is important to use of these steels in fusion reactor structures. The 9Cr-2WVTa steels were doped with 58Ni and 60Ni isotopes at 2 weight percent to control the rate of transmutation helium generation. The samples were irradiated in the High Flux Isotope Reactor to ~24 displacements per atom at nominal temperatures of 300, 400, and 500°C, producing 228 and 7 atomic parts-per-million helium in the 58Ni- and 60Ni-doped samples, respectively. Transmission electron microscopy revealed a variety of precipitates and the radiation-induced dislocation loops and cavities (voids or helium bubbles). Tensile tests of the irradiated samples at the irradiation temperatures showed radiation-induced hardening at 300°C and radiation-induced softening at 400°C. Analysis indicates that the hardening primarily originated from the loops and cavities. The 58Ni-doped samples had greater strengthening contributions from loops and cavities, leading to higher hardening with lower ductility than the 60Ni-doped samples. The greater helium production of 58Ni did not show pronounced reductions in ductility of the samples
    corecore