19 research outputs found
Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions
The mean field Kuramoto model describing the synchronization of a population
of phase oscillators with a bimodal frequency distribution is analyzed (by the
method of multiple scales) near regions in its phase diagram corresponding to
synchronization to phases with a time periodic order parameter. The richest
behavior is found near the tricritical point were the incoherent, stationarily
synchronized, ``traveling wave'' and ``standing wave'' phases coexist. The
behavior near the tricritical point can be extrapolated to the rest of the
phase diagram. Direct Brownian simulation of the model confirms our findings.Comment: Revtex,16 pag.,10 fig., submitted to Physica
Synchronization in populations of globally coupled oscillators with inertial effects
A model for synchronization of globally coupled phase oscillators including
``inertial'' effects is analyzed. In such a model, both oscillator frequencies
and phases evolve in time. Stationary solutions include incoherent
(unsynchronized) and synchronized states of the oscillator population. Assuming
a Lorentzian distribution of oscillator natural frequencies, , both
larger inertia or larger frequency spread stabilize the incoherent solution,
thereby making harder to synchronize the population. In the limiting case
, the critical coupling becomes independent of
inertia. A richer phenomenology is found for bimodal distributions. For
instance, inertial effects may destabilize incoherence, giving rise to
bifurcating synchronized standing wave states. Inertia tends to harden the
bifurcation from incoherence to synchronized states: at zero inertia, this
bifurcation is supercritical (soft), but it tends to become subcritical (hard)
as inertia increases. Nonlinear stability is investigated in the limit of high
natural frequencies.Comment: Revtex, 36 pages, submit to Phys. Rev.
Constrained Markovian dynamics of random graphs
We introduce a statistical mechanics formalism for the study of constrained
graph evolution as a Markovian stochastic process, in analogy with that
available for spin systems, deriving its basic properties and highlighting the
role of the `mobility' (the number of allowed moves for any given graph). As an
application of the general theory we analyze the properties of
degree-preserving Markov chains based on elementary edge switchings. We give an
exact yet simple formula for the mobility in terms of the graph's adjacency
matrix and its spectrum. This formula allows us to define acceptance
probabilities for edge switchings, such that the Markov chains become
controlled Glauber-type detailed balance processes, designed to evolve to any
required invariant measure (representing the asymptotic frequencies with which
the allowed graphs are visited during the process). As a corollary we also
derive a condition in terms of simple degree statistics, sufficient to
guarantee that, in the limit where the number of nodes diverges, even for
state-independent acceptance probabilities of proposed moves the invariant
measure of the process will be uniform. We test our theory on synthetic graphs
and on realistic larger graphs as studied in cellular biology.Comment: 28 pages, 6 figure
Acceptability and feasibility of a virtual community of practice to primary care professionals regarding patient empowerment : A qualitative pilot study
Background: Virtual communities of practice (vCoPs) facilitate online learning via the exchange of experiences and knowledge between interested participants. Compared to other communities, vCoPs need to overcome technological structures and specific barriers. Our objective was to pilot the acceptability and feasibility of a vCoP aimed at improving the attitudes of primary care professionals to the empowerment of patients with chronic conditions. Methods: We used a qualitative approach based on 2 focus groups: one composed of 6 general practitioners and the other of 6 practice nurses. Discussion guidelines on the topics to be investigated were provided to the moderator. Sessions were audio-recorded and transcribed verbatim. Thematic analysis was performed using the ATLAS-ti software. Results: The available operating systems and browsers and the lack of suitable spaces and time were reported as the main difficulties with the vCoP. The vCoP was perceived to be a flexible learning mode that provided up-to-date resources applicable to routine practice and offered a space for the exchange of experiences and approaches. Conclusions: The results from this pilot study show that the vCoP was considered useful for learning how to empower patients. However, while vCoPs have the potential to facilitate learning and as shown create professional awareness regarding patient empowerment, attention needs to be paid to technological and access issues and the time demands on professionals. We collected relevant inputs to improve the features, content and educational methods to be included in further vCoP implementation. Trial registration: ClinicalTrials.gov, NCT02757781. Registered on 25 April 2016
RICORS2040 : The need for collaborative research in chronic kidney disease
Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar