87 research outputs found

    Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons

    Full text link
    Intensity-tuned auditory cortex neurons may be formed by intensity-tuned synaptic excitation. Synaptic inhibition has also been shown to enhance, and possibly even create intensity-tuned neurons. Here we show, using in vivo whole cell recordings in pentobarbital-anesthetized rats, that some intensity-tuned neurons are indeed created solely through disproportionally large inhibition at high intensities, without any intensity-tuned excitation. Since inhibition is essentially cortical in origin, these neurons provide examples of auditory feature-selectivity arising de novo at the cortex.Comment: 22 pages, 5 figure

    Red Tides In the Gulf of Mexico: Where, When, and Why?

    Get PDF
    Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus-rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron-rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen-poor sea water. They and the co-occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near-bottom seed populations to CDOM-rich surface waters of coastal regions, light-inhibition of the small red tide of similar to 1 ug chl l(-1) of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self-shaded red tides of similar to 10 ug chl l(-1). The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P-sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication

    Exclusive measurements of quasi-free proton scattering reactions in inverse and complete kinematics

    Get PDF
    Quasi-free scattering reactions of the type (p, 2p) were measured for the first time exclusively in complete and inverse kinematics, using a 12C beam at an energy of ~400 MeV/u as a benchmark. This new technique has been developed to study the single-particle structure of exotic nuclei in experiments with radioactive-ion beams. The outgoing pair of protons and the fragments were measured simultaneously, enabling an unambiguous identification of the reaction channels and a redundant measurement of the kinematic observables. Both valence and deeply-bound nucleon orbits are probed, including those leading to unbound states of the daughter nucleus. Exclusive (p, 2p) cross sections of 15.8(18) mb, 1.9(2) mb and 1.5(2) mb to the low-lying 0p-hole states overlapping with the ground state (3/2-) and with the bound excited states of 11B at 2.125 MeV (1/2-) and 5.02 MeV (3/2-), respectively, were determined via γ-ray spectroscopy. Particle-unstable deep-hole states, corresponding to proton removal from the 0s-orbital, were studied via the invariant-mass technique. Cross sections and momentum distributions were extracted and compared to theoretical calculations employing the eikonal formalism. The obtained results are in a good agreement with this theory and with direct-kinematics experiments. The dependence of the proton-proton scattering kinematics on the internal momentum of the struck proton and on its separation energy was investigated for the first time in inverse kinematics employing a large-acceptance measurement

    Cumulative incidence and risk factors for cutaneous squamous-cell carcinoma metastases in organ transplant recipients: the SCOPE-ITSCC metastases study, a prospective multi-center study.

    Get PDF
    Solid organ transplant recipients (SOTRs) are believed to have an increased risk of metastatic cutaneous squamous-cell carcinoma (cSCC), but reliable data are lacking regarding the precise incidence and associated risk factors. In a prospective cohort study, including 19 specialist dermatology outpatient clinics in 15 countries, patient and tumor characteristics were collected using standardized questionnaires when SOTRs presented with a new cSCC. After a minimum of 2 years of follow-up, relevant data for all SOTRs were collected. Cumulative incidence of metastases was calculated by the Aalen-Johansen estimator. Fine and Gray models were used to assess multiple risk factors for metastases. Of 514 SOTRs who presented with 623 primary cSCCs, 37 developed metastases with a 2-year patient-based cumulative incidence of 6.2%. Risk factors for metastases included location in the head and neck area, local recurrence, size >2cm, clinical ulceration, poor differentiation grade, perineural invasion and deep invasion. A high-stage tumor that is also ulcerated showed the highest risk of metastasis, with a 2-year cumulative incidence of 46.2% (31.9% - 68.4%). SOTRs have a high risk of cSCC metastases and well-established clinical and histological risk factors have been confirmed. High-stage, ulcerated cSCCs have the highest risk of metastasis. [Abstract copyright: Copyright © 2024. Published by Elsevier Inc.

    An atherogenic diet disturbs aquaporin 5 expression in liver and adipocyte tissues of apolipoprotein e-deficient mice: new insights into an old model of experimental atherosclerosis

    Get PDF
    The dysfunction of vascular endothelial cells is profoundly implicated in the pathogenesis of atherosclerosis and cardiovascular disease, the global leading cause of death. Aquaporins (AQPs) are membrane channels that facilitate water and glycerol transport across cellular membranes re-cently implicated in the homeostasis of the cardiovascular system. Apolipoprotein-E deficient (apoE−/−) mice are a common model to study the progression of atherosclerosis. Nevertheless, the pattern of expression of AQPs in this atheroprone model is poorly characterized. In this study, apoE−/− mice were fed an atherogenic high-fat (HF) or a control diet. Plasma was collected at multiple time points to assess metabolic disturbances. At the endpoint, the aortic atherosclerotic burden was quantified using high field magnetic resonance imaging. Moreover, the transcriptional levels of several AQP isoforms were evaluated in the liver, white adipocyte tissue (WAT), and brown adipocyte tissue (BAT). The results revealed that HF-fed mice, when compared to controls, presented an ex-acerbated systemic inflammation and atherosclerotic phenotype, with no major differences in systemic methylation status, circulating amino acids, or plasma total glutathione. Moreover, an over-expression of the isoform AQP5 was detected in all studied tissues from HF-fed mice when compared to controls. These results suggest a novel role for AQP5 on diet-induced atherosclerosis that warrants further investigation

    No effect of diet-induced mild hyperhomocysteinemia on vascular methylating capacity, atherosclerosis progression, and specific histone methylation

    Get PDF
    Hyperhomocysteinemia (HHcy) is a risk factor for atherosclerosis through mechanisms which are still incompletely defined. One possible mechanism involves the hypomethylation of the nuclear histone proteins to favor the progression of atherosclerosis. In previous cell studies, hypomethylating stress decreased a specific epigenetic tag (the trimethylation of lysine 27 on histone H3, H3K27me3) to promote endothelial dysfunction and activation, i.e., an atherogenic phenotype. Here, we conducted a pilot study to investigate the impact of mild HHcy on vascular methylating index, atherosclerosis progression and H3K27me3 aortic content in apolipoprotein E-deficient (ApoE−/−) mice. In two different sets of experiments, male mice were fed high-fat, low in methyl donors (HFLM), or control (HF) diets for 16 (Study A) or 12 (Study B) weeks. At multiple time points, plasma was collected for (1) quantification of total homocysteine (tHcy) by high-performance liquid chromatography; or (2) the methylation index of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH ratio) by liquid chromatography tandem-mass spectrometry; or (3) a panel of inflammatory cytokines previously implicated in atherosclerosis by a multiplex assay. At the end point, aortas were collected and used to assess (1) the methylating index (SAM:SAH ratio); (2) the volume of aortic atherosclerotic plaque assessed by high field magnetic resonance imaging; and (3) the vascular content of H3K27me3 by immunohistochemistry. The results showed that, in both studies, HFLM-fed mice, but not those mice fed control diets, accumulated mildly elevated tHcy plasmatic concentrations. However, the pattern of changes in the inflammatory cytokines did not support a major difference in systemic inflammation between these groups. Accordingly, in both studies, no significant differences were detected for the aortic methylating index, plaque burden, and H3K27me3 vascular content between HF and HFLM-fed mice. Surprisingly however, a decreased plasma SAM: SAH was also observed, suggesting that the plasma compartment does not always reflect the vascular concentrations of these two metabolites, at least in this model. Mild HHcy in vivo was not be sufficient to induce vascular hypomethylating stress or the progression of atherosclerosis, suggesting that only higher accumulations of plasma tHcy will exhibit vascular toxicity and promote specific epigenetic dysregulation

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Quasi-free neutron and proton knockout reactions from light nuclei in a wide neutron-to-proton asymmetry range

    Get PDF
    The quasi-free scattering reactions 11C(p,2p) and 10,11,12C(p,pn) have been studied in inverse kinematics at beam energies of 300–400 MeV/u at the R3B-LAND setup. The outgoing proton-proton and proton-neutron pairs were detected in coincidence with the reaction fragments in kinematically complete measurements. The efficiency to detect these pairs has been obtained from GEANT4 simulations which were tested using the 12C(p,2p) and 12C(p,pn) reactions. Experimental cross sections and momentum distributions have been obtained and compared to DWIA calculations based on eikonal theory. The new results reported here are combined with previously published cross sections for quasi-free scattering from oxygen and nitrogen isotopes and together they enable a systematic study of the reduction of single-particle strength compared to predictions of the shell model over a wide neutron-to-proton asymmetry range. The combined reduction factors show a weak or no dependence on isospin asymmetry, in contrast to the strong dependency reported in nucleon-removal reactions induced by nuclear targets at lower energies. However, the reduction factors for (p,2p) are found to be 'significantly smaller than for (p,pn) reactions for all investigated nuclei.German Federal Ministry of Education and Research | Ref. BMBF 05P2015RDFN1German Federal Ministry of Education and Research | Ref. 05P15WOFNAEuropean Commission | Ref. FP7, ENSAR, n. 262010Comisión Interministerial de Ciencia y Tecnología (CICYT) | Ref. FPA2012-32443Comisión Interministerial de Ciencia y Tecnología (CICYT) | Ref. FPA2015-64969-07387Comisión Interministerial de Ciencia y Tecnología (CICYT) | Ref. FPA2015-69640-C2-1-PSwedish Research Council | Ref. 621-2011-5324National Science Foundation, EE. UU. | Ref. n. 1415656Department of Energy, EE. UU. | Ref. n. DE-FG02-08ER41533Fundação para a Ciência e a Tecnologia | Ref. PTDC/FIS/ 103902/200
    corecore