29 research outputs found

    The crustal structure of the north-eastern Gulf of Aden continental margin: insights from wide-angle seismic data

    Get PDF
    International audienceThe wide-angle seismic (WAS) and gravity data of the Encens survey allow us to determinethe deep crustal structure of the north-eastern Gulf of Aden non-volcanic passive margin.The Gulf of Aden is a young oceanic basin that began to open at least 17.6 Ma ago. Itscurrent geometry shows first- and second-order segmentation: our study focusses on theAshawq–Salalah second-order segment, between Alula–Fartak and Socotra–Hadbeen fracturezones. Modelling of theWAS and gravity data (three profiles across and three along the margin)gives insights into the first- and second-order structures. (1) Continental thinning is abrupt(15–20 km thinning across 50–100 km distance). It is accommodated by several tilted blocks.(2) The ocean–continent transition (OCT) is narrow (15 km wide). The velocity modellingprovides indications on its geometry: oceanic-type upper-crust (4.5 km s−1) and continentaltypelower crust (>6.5 km s−1). (3) The thickness of the oceanic crust decreases from West(10 km) to the East (5.5 km). This pattern is probably linked to a variation of magma supplyalong the nascent slow-spreading ridge axis. (4) A 5 km thick intermediate velocity body (7.6to 7.8 kms−1) exists at the crust-mantle interface below the thinned margin, the OCT and theoceanic crust. We interpret it as an underplated mafic body, or partly intruded mafic materialemplaced during a ‘post-rift’ event, according to the presence of a young volcano evidencedby heat-flow measurement (Encens-Flux survey) and multichannel seismic reflection (Encenssurvey). We propose that the non-volcanic passive margin is affected by post-rift volcanismsuggesting that post-rift melting anomalies may influence the late evolution of non-volcanicpassive margins

    From Continental Hyperextension to Seafloor Spreading: New Insights on the Porcupine Basin from Wide-angle Seismic Data

    Get PDF
    Key Points: - New analysis of wide-angle seismic data from the southern Porcupine Basin. - Evidence for presence of oceanic crust in the southern Porcupine Basin. - Jurassic rifting propagated from south to north, resulting in non-uniform strain when rifting stopped. The deep structure and sedimentary record of rift basins provide an important insight into understanding the geological processes involved in lithospheric extension. We investigate the crustal structure and large‐scale sedimentary architecture of the southern Porcupine Basin, offshore Ireland along three wide‐angle seismic profiles, supplemented by thirteen selected seismic reflection profiles. The seismic velocity and crustal geometry models obtained by joint refraction and reflection travel‐time inversion clearly image the deep structure of the basin. Our results suggest the presence of three distinct crustal domains along the rifting axis: (a) continental crust becoming progressively hyperextended from north to south through the basin, (b) a transitional zone of uncertain nature and (c) a 7‐8 km thick zone of oceanic crust. The latter is overlain by a ~ 8 km compacted Upper Paleozoic‐Mesozoic succession and ~ 2 km of Cenozoic strata. Due to the lack of clear magnetic anomalies and in the absence of well control, the precise age of interpreted oceanic crust is unknown. However, we can determine an age range of Late Jurassic to Late Cretaceous from the regional context. We propose a northward‐propagating rifting process in the Porcupine Basin, resulting in variations in strain along the rift axis

    Deep structure of the Porcupine Basin from wide-angle seismic data

    Get PDF
    The Porcupine Basin, part of the frontier petroleum exploration province west of Ireland, has an extended history that commenced prior to the opening of the North Atlantic Ocean. Lithospheric stretching factors have previously been estimated to increase from 6 in the south of the basin. Thus, it is an ideal location to study the processes leading to hyper-extension on continental margins. The Porcupine Median Ridge (PMR) is located in the south of the basin and has been alternatively interpreted as a volcanic feature, a serpentinite mud diapir or a tilted block of continental crust. Each of these interpretations has different implications for the thermal history of the basin. We present results from travel-time tomographic modelling of two approximately 300 km-long wide-angle seismic profiles across the northern and southern parts of the basin. Our results show: (1) the geometry of the crust, with maximum crustal stretching factors of up to 6 and 10 along the northern and southern profiles, respectively; (2) asymmetry of the basin structures, suggesting some simple shear during extension; (3) low velocities beneath the Moho that could represent either partially serpentinized mantle or mafic under-plating; and (4) a possible igneous composition of the PMR

    Prospective observational cohort study of the association between antiplatelet therapy, bleeding and thrombosis in patients with coronary stents undergoing noncardiac surgery

    Get PDF
    Background: The perioperative management of antiplatelet therapy in noncardiac surgery patients who have undergone previous percutaneous coronary intervention (PCI) remains a dilemma. Continuing dual antiplatelet therapy (DAPT) may carry a risk of bleeding, while stopping antiplatelet therapy may increase the risk of perioperative major adverse cardiovascular events (MACE). Methods: Occurrence of Bleeding and Thrombosis during Antiplatelet Therapy In Non-Cardiac Surgery (OBTAIN) was an international prospective multicentre cohort study of perioperative antiplatelet treatment, MACE, and serious bleeding in noncardiac surgery. The incidences of MACE and bleeding were compared in patients receiving DAPT, monotherapy, and no antiplatelet therapy before surgery. Unadjusted risk ratios were calculated taking monotherapy as the baseline. The adjusted risks of bleeding and MACE were compared in patients receiving monotherapy and DAPT using propensity score matching. Results: A total of 917 patients were recruited and 847 were eligible for inclusion. Ninety-six patients received no antiplatelet therapy, 526 received monotherapy with aspirin, and 225 received DAPT. Thirty-two patients suffered MACE and 22 had bleeding. The unadjusted risk ratio for MACE in patients receiving DAPT compared with monotherapy was 1.9 (0.93–3.88), P=0.08. There was no difference in MACE between no antiplatelet treatment and monotherapy 1.03 (0.31–3.46), P=0.96. Bleeding was more frequent with DAPT 6.55 (2.3–17.96) P=0.0002. In a propensity matched analysis of 177 patients who received DAPT and 177 monotherapy patients, the risk ratio for MACE with DAPT was 1.83 (0.69–4.85), P=0.32. The risk of bleeding was significantly greater in the DAPT group 4.00 (1.15–13.93), P=0.031. Conclusions: OBTAIN showed an increased risk of bleeding with DAPT and found no evidence for protective effects of DAPT from perioperative MACE in patients who have undergone previous PCI

    Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals

    No full text
    Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to their distribution in deep and/or cold waters, which naturally exhibit a CaCO3 saturation state lower than in shallow/warm waters. Calcification was measured in three species of Mediterranean cold-water scleractinian corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) on-board research vessels and soon after collection. Incubations were performed in ambient sea water. The species M. oculata was additionally incubated in sea water reduced or enriched in CO2. At ambient conditions, calcification rates ranged between -0.01 and 0.23% d(-1). Calcification rates of M. oculata under variable partial pressure of CO2 (pCO(2)) were the same for ambient and elevated pCO(2) (404 and 867 mu atm) with 0.06+/-0.06% d(-1), while calcification was 0.12+/-0.06% d(-1) when pCO(2) was reduced to its pre-industrial level (285 mu atm). This suggests that present-day CWC calcification in the Mediterranean Sea has already drastically declined (by 50%) as a consequence of anthropogenic-induced ocean acidification

    Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century

    No full text
    International audienceThe rise of CO 2 has been identified as a major threat to life in the ocean. About one-third of the anthro-pogenic CO 2 produced in the last 200 yr has been taken up by the ocean, leading to ocean acidification. Surface seawater pH is projected to decrease by about 0.4 units between the pre-industrial revolution and 2100. The branching cold-water corals Madrepora oculata and Lophelia pertusa are important, habitat-forming species in the deep Mediter-ranean Sea. Although previous research has investigated the abundance and distribution of these species, little is known regarding their ecophysiology and potential responses to global environmental change. A previous study indicated that the rate of calcification of these two species remained constant up to 1000 ”atm CO 2 , a value that is at the upper end of changes projected to occur by 2100. We examined whether the ability to maintain calcification rates in the face of rising pCO 2 affected the energetic requirements of these corals. Over the course of three months, rates of respiration were measured at a pCO 2 ranging between 350 and 1100 ”atm to distinguish between short-term response and longer-term acclimation. Respiration rates ranged from 0.074 to 0.266 ”mol O 2 (g skeletal dry weight) −1 h −1 and 0.095 to 0.725 ”mol O 2 (g skeletal dry weight) −1 h −1 for L. pertusa and M. oculata, respectively, and were independent of pCO 2. Respiration increased with time likely due to regular feeding, which may have provided an increased energy supply to sustain coral metabolism. Future studies are needed to confirm whether the insensitivity of respiration to increasing pCO 2 is a general feature of deep-sea corals in other regions

    The Limpopo magma‐rich transform margin, South Mozambique – part 2: Implications for the Gondwana breakup

    No full text
    International audienceThe rifted continental margins of Mozambique provide excellent examples of continental passive margins with a significant structural variability associated with magmatism and inheritance. Despite accumulated knowledge, the tectonic structure and nature of the crust beneath the South Mozambique Coastal Plain (SMCP) are still poorly known. This study interprets high-resolution seismic reflection data paired with data from industry-drilled wells and proposes a structural model of the Limpopo transform margin in a magma-rich context. Results indicate that the Limpopo transform margin is characterized by an ocean-continent transition that links the Beira-High and Natal valley margin segments and represents the western limit of the continental crust, separating continental volcano-sedimentary infilled grabens from the oceanic crust domain. These basins result from the emplacement of the Karoo Supergroup during a Permo-Triassic tectonic event, followed by an Early Jurassic tectonic and magmatic event. This latter led to the establishment of steady-state seafloor spreading at ca.156 Ma along the SMCP. A Late Jurassic to Early Cretaceous event corresponds to formation of the Limpopo transform fault zone. Which accommodated the SSE-ward displacement of Antarctica with respect to Africa. We define a new type of margin: the magma-rich transform margin, characterized by the presence of voluminous magmatic extrusion and intrusion coincident with the formation and evolution of the transform margin. The Limpopo transform fault zone consists of several syn-transfer and -transform faults rather than a single transform fault. The intense magmatic activity was associated primarily with mantle dynamics, which controlled the large-scale differential subsidence along the transform margin
    corecore