16 research outputs found

    Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols

    Get PDF
    Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and, thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the beginning of the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare the modeled dynamical response of Mediterranean precipitation to individual forcing agents in a set of global climate models (GCMs). Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean and that precipitation is more sensitive to black carbon (BC) forcing than to well-mixed greenhouse gases (WMGHGs) or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive sea level pressure (SLP) pattern similar to the North Atlantic Oscillation–Arctic Oscillation, characterized by higher SLP at midlatitudes and lower SLP at high latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31±17%) of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs, whereas global scattering sulfate aerosols would have negligible impacts. Aerosol–cloud interactions appear to have minimal impacts on Mediterranean precipitation in these models, at least in part because many simulations did not fully include such processes; these merit further study. The findings from this study suggest that future BC and WMGHG emissions may significantly affect regional water resources, agricultural practices, ecosystems and the economy in the Mediterranean region

    Marine cloud brightening – as effective without clouds

    No full text
    Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30° N and 30° S are set in each model to generate a global-mean effective radiative forcing (ERF) of −2.0 W m−2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. These findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought

    Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data

    No full text
    The response of clouds to sudden decreases in the flux of galactic cosmic rays (GCR) – Forbush decrease events – has been investigated using cloud products from the space-borne MODIS instrument, which has been in operation since 2000. By focusing on pristine Southern Hemisphere ocean regions we examine areas where we believe that a cosmic ray signal should be easier to detect than elsewhere. While previous studies have mainly considered cloud cover, the high spatial and spectral resolution of MODIS allows for a more thorough study of microphysical parameters such as cloud droplet size, cloud water content and cloud optical depth, in addition to cloud cover. Averaging the results from the 22 Forbush decrease events that were considered, no statistically significant correlations were found between any of the four cloud parameters and GCR, when autocorrelations were taken into account. Splitting the area of study into six domains, all of them have a negative correlation between GCR and cloud droplet size, in agreement with a cosmic ray – cloud coupling, but in only one of the domains (eastern Atlantic Ocean) was the correlation statistically significant. Conversely, cloud optical depth is mostly negatively correlated with GCR, and in the eastern Atlantic Ocean domain that correlation is statistically significant. For cloud cover and liquid water path, the correlations with GCR are weaker, with large variations between the different domains. When only the six Forbush decrease events with the largest amplitude (more than 10% decrease) were studied, the correlations fit the hypothesis slightly better, with 16 out of 24 correlations having the expected sign, although many of the correlations are quite weak. Introducing a time lag of a few days for clouds to respond to the cosmic ray signal the correlations tend to become weaker and even to change sign

    Response to marine cloud brightening in a multi-model ensemble

    No full text
    Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to −1.9 W m−2, with a substantial inter-model spread of −0.6 to −2.5 W m−2. The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069) −0.96 [−0.17 to −1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of −2.35 [−0.57 to −2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions

    Global and regional radiative forcing from 20 % reductions in BC, OC and SO<sub>4</sub> – an HTAP2 multi-model study

    No full text
    In the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise, a range of global atmospheric general circulation and chemical transport models performed coordinated perturbation experiments with 20 % reductions in emissions of anthropogenic aerosols, or aerosol precursors, in a number of source regions. Here, we compare the resulting changes in the atmospheric load and vertically resolved profiles of black carbon (BC), organic aerosols (OA) and sulfate (SO4) from 10 models that include treatment of aerosols. We use a set of temporally, horizontally and vertically resolved profiles of aerosol forcing efficiency (AFE) to estimate the impact of emission changes in six major source regions on global radiative forcing (RF) pertaining to the direct aerosol effect, finding values between. 51.9 and 210.8 mW m−2 Tg−1 for BC, between −2.4 and −17.9 mW m−2 Tg−1 for OA and between −3.6 and −10.3 W m−2 Tg−1 for SO4. In most cases, the local influence dominates, but results show that mitigations in south and east Asia have substantial impacts on the radiative budget in all investigated receptor regions, especially for BC. In Russia and the Middle East, more than 80 % of the forcing for BC and OA is due to extra-regional emission reductions. Similarly, for North America, BC emissions control in east Asia is found to be more important than domestic mitigations, which is consistent with previous findings. Comparing fully resolved RF calculations to RF estimates based on vertically averaged AFE profiles allows us to quantify the importance of vertical resolution to RF estimates. We find that locally in the source regions, a 20 % emission reduction strengthens the radiative forcing associated with SO4 by 25 % when including the vertical dimension, as the AFE for SO4 is strongest near the surface. Conversely, the local RF from BC weakens by 37 % since BC AFE is low close to the ground. The fraction of BC direct effect forcing attributable to intercontinental transport, on the other hand, is enhanced by one-third when accounting for the vertical aspect, because long-range transport primarily leads to aerosol changes at high altitudes, where the BC AFE is strong. While the surface temperature response may vary with the altitude of aerosol change, the analysis in the present study is not extended to estimates of temperature or precipitation changes

    Aerosol absorption in global models from AeroCom phase III

    Get PDF
    International audienceAbstract. Aerosol-induced absorption of shortwave radiation can modify the climate through local atmospheric heating, which affects lapse rates, precipitation, and cloud formation. Presently, the total amount of aerosol absorption is poorly constrained, and the main absorbing aerosol species (black carbon (BC), organic aerosols (OA), and mineral dust) are diversely quantified in global climate models. As part of the third phase of the Aerosol Comparisons between Observations and Models (AeroCom) intercomparison initiative (AeroCom phase III), we here document the distribution and magnitude of aerosol absorption in current global aerosol models and quantify the sources of intermodel spread, highlighting the difficulties of attributing absorption to different species. In total, 15 models have provided total present-day absorption at 550 nm (using year 2010 emissions), 11 of which have provided absorption per absorbing species. The multi-model global annual mean total absorption aerosol optical depth (AAOD) is 0.0054 (0.0020 to 0.0098; 550 nm), with the range given as the minimum and maximum model values. This is 28 % higher compared to the 0.0042 (0.0021 to 0.0076) multi-model mean in AeroCom phase II (using year 2000 emissions), but the difference is within 1 standard deviation, which, in this study, is 0.0023 (0.0019 in Phase II). Of the summed component AAOD, 60 % (range 36 %–84 %) is estimated to be due to BC, 31 % (12 %–49 %) is due to dust, and 11 % (0 %–24 %) is due to OA; however, the components are not independent in terms of their absorbing efficiency. In models with internal mixtures of absorbing aerosols, a major challenge is the lack of a common and simple method to attribute absorption to the different absorbing species. Therefore, when possible, the models with internally mixed aerosols in the present study have performed simulations using the same method for estimating absorption due to BC, OA, and dust, namely by removing it and comparing runs with and without the absorbing species. We discuss the challenges of attributing absorption to different species; we compare burden, refractive indices, and density; and we contrast models with internal mixing to models with external mixing. The model mean BC mass absorption coefficient (MAC) value is 10.1 (3.1 to 17.7) m2 g−1 (550 nm), and the model mean BC AAOD is 0.0030 (0.0007 to 0.0077). The difference in lifetime (and burden) in the models explains as much of the BC AAOD spread as the difference in BC MAC values. The difference in the spectral dependency between the models is striking. Several models have an absorption Ångstrøm exponent (AAE) close to 1, which likely is too low given current knowledge of spectral aerosol optical properties. Most models do not account for brown carbon and underestimate the spectral dependency for OA
    corecore